Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To factor the expression [tex]\(6x^4 - 5x^2 + 12x^2 - 10\)[/tex] by grouping, follow these steps:
1. Combine like terms:
The expression has terms with [tex]\(x^2\)[/tex] that should be combined. So,
[tex]\[ 6x^4 - 5x^2 + 12x^2 - 10 = 6x^4 + 7x^2 - 10 \][/tex]
2. Factor the resulting expression:
We need to factor [tex]\(6x^4 + 7x^2 - 10\)[/tex].
3. Identify the structure for factoring:
The expression can be viewed as a quadratic in terms of [tex]\(x^2\)[/tex]:
[tex]\[ 6(x^2)^2 + 7(x^2) - 10 \][/tex]
Let [tex]\(u = x^2\)[/tex]. Then, the expression becomes:
[tex]\[ 6u^2 + 7u - 10 \][/tex]
Now, factor [tex]\(6u^2 + 7u - 10\)[/tex].
4. Find factors that multiply to give the constant term and sum to give the middle coefficient:
We look for two numbers that multiply to [tex]\(6 \cdot (-10) = -60\)[/tex] and add to [tex]\(7\)[/tex].
These numbers are [tex]\(12\)[/tex] and [tex]\(-5\)[/tex].
5. Rewrite the middle term using these numbers:
[tex]\[ 6u^2 + 12u - 5u - 10 \][/tex]
6. Group terms and factor each group:
[tex]\[ (6u^2 + 12u) + (-5u - 10) \][/tex]
Factor out the common terms from each group:
[tex]\[ 6u(u + 2) - 5(u + 2) \][/tex]
7. Factor out the common binomial factor [tex]\(u + 2\)[/tex]:
[tex]\[ (6u - 5)(u + 2) \][/tex]
8. Substitute back [tex]\(u = x^2\)[/tex]:
[tex]\[ (6x^2 - 5)(x^2 + 2) \][/tex]
Thus, the factored expression is:
[tex]\[ (6x^2 - 5)(x^2 + 2) \][/tex]
Therefore, the resulting expression is [tex]\(\boxed{\left(6 x^2-5\right)\left(x^2+2\right)}\)[/tex].
1. Combine like terms:
The expression has terms with [tex]\(x^2\)[/tex] that should be combined. So,
[tex]\[ 6x^4 - 5x^2 + 12x^2 - 10 = 6x^4 + 7x^2 - 10 \][/tex]
2. Factor the resulting expression:
We need to factor [tex]\(6x^4 + 7x^2 - 10\)[/tex].
3. Identify the structure for factoring:
The expression can be viewed as a quadratic in terms of [tex]\(x^2\)[/tex]:
[tex]\[ 6(x^2)^2 + 7(x^2) - 10 \][/tex]
Let [tex]\(u = x^2\)[/tex]. Then, the expression becomes:
[tex]\[ 6u^2 + 7u - 10 \][/tex]
Now, factor [tex]\(6u^2 + 7u - 10\)[/tex].
4. Find factors that multiply to give the constant term and sum to give the middle coefficient:
We look for two numbers that multiply to [tex]\(6 \cdot (-10) = -60\)[/tex] and add to [tex]\(7\)[/tex].
These numbers are [tex]\(12\)[/tex] and [tex]\(-5\)[/tex].
5. Rewrite the middle term using these numbers:
[tex]\[ 6u^2 + 12u - 5u - 10 \][/tex]
6. Group terms and factor each group:
[tex]\[ (6u^2 + 12u) + (-5u - 10) \][/tex]
Factor out the common terms from each group:
[tex]\[ 6u(u + 2) - 5(u + 2) \][/tex]
7. Factor out the common binomial factor [tex]\(u + 2\)[/tex]:
[tex]\[ (6u - 5)(u + 2) \][/tex]
8. Substitute back [tex]\(u = x^2\)[/tex]:
[tex]\[ (6x^2 - 5)(x^2 + 2) \][/tex]
Thus, the factored expression is:
[tex]\[ (6x^2 - 5)(x^2 + 2) \][/tex]
Therefore, the resulting expression is [tex]\(\boxed{\left(6 x^2-5\right)\left(x^2+2\right)}\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.