Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Which shows one way to determine the factors of [tex]\( x^3 + 5x^2 - 6x - 30 \)[/tex] by grouping?

A. [tex]\( x(x^2 - 5) + 6(x^2 - 5) \)[/tex]
B. [tex]\( x(x^2 + 5) - 6(x^2 + 5) \)[/tex]
C. [tex]\( x^2(x - 5) + 6(x - 5) \)[/tex]
D. [tex]\( x^2(x + 5) - 6(x + 5) \)[/tex]


Sagot :

To determine the factors of the polynomial [tex]\( x^3 + 5x^2 - 6x - 30 \)[/tex] by grouping, let's go through the process step by step.

1. Group the terms:
We have the polynomial [tex]\( x^3 + 5x^2 - 6x - 30 \)[/tex]. Let's group the terms in pairs:
[tex]\[ (x^3 + 5x^2) + (-6x - 30) \][/tex]

2. Factor out the common factors in each group:
- In the first group [tex]\( x^3 + 5x^2 \)[/tex], the common factor is [tex]\( x^2 \)[/tex]:
[tex]\[ x^2(x + 5) \][/tex]
- In the second group [tex]\( -6x - 30 \)[/tex], the common factor is [tex]\( -6 \)[/tex]:
[tex]\[ -6(x + 5) \][/tex]

3. Rewrite the expression with the factored groups:
Combining these, we get:
[tex]\[ x^2(x + 5) - 6(x + 5) \][/tex]

4. Factor out the common binomial factor [tex]\((x + 5)\)[/tex]:
Now, we see that [tex]\( (x + 5) \)[/tex] is a common factor in both terms:
[tex]\[ (x^2 - 6)(x + 5) \][/tex]

So, the polynomial [tex]\( x^3 + 5x^2 - 6x - 30 \)[/tex] can be factored as [tex]\( (x^2 - 6)(x + 5) \)[/tex].

From the options provided, the correct grouping is:
[tex]\[ x^2(x + 5) - 6(x + 5) \][/tex]