Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Which shows one way to determine the factors of [tex]\( x^3 - 9x^2 + 5x - 45 \)[/tex] by grouping?

A. [tex]\( x^2(x - 9) - 5(x - 9) \)[/tex]

B. [tex]\( x^2(x + 9) - 5(x + 9) \)[/tex]

C. [tex]\( x(x^2 + 5) - 9(x^2 + 5) \)[/tex]

D. [tex]\( x(x^2 - 5) - 9(x^2 - 5) \)[/tex]


Sagot :

To determine the factors of the polynomial [tex]\(x^3 - 9x^2 + 5x - 45\)[/tex] by grouping, let's look at how we can rearrange and group the terms to factor it effectively.

Given polynomial:
[tex]\[ x^3 - 9x^2 + 5x - 45 \][/tex]

We need to group the terms in pairs and factor out the common factor in each group. Let's start by grouping the terms:
[tex]\[ (x^3 - 9x^2) + (5x - 45) \][/tex]

Next, we factor out the greatest common factor (GCF) from each group:
[tex]\[ x^2(x - 9) + 5(x - 9) \][/tex]

Now, notice that each group contains a common binomial factor [tex]\( (x - 9) \)[/tex]. We can factor this common binomial factor out:
[tex]\[ (x - 9)(x^2 + 5) \][/tex]

Thus, we have factored the polynomial [tex]\(x^3 - 9x^2 + 5x - 45\)[/tex] as:
[tex]\[ (x - 9)(x^2 + 5) \][/tex]

Looking at the given choices:

1. [tex]\( x^2(x - 9) - 5(x - 9) \)[/tex]
2. [tex]\( x^2(x + 9) - 5(x + 9) \)[/tex]
3. [tex]\( x(x^2 + 5) - 9(x^2 + 5) \)[/tex]
4. [tex]\( x(x^2 - 5) - 9(x^2 - 5) \)[/tex]

The first option matches the grouping we derived:
[tex]\[ x^2(x - 9) - 5(x - 9) \][/tex]

So, the correct way to demonstrate one method of factoring [tex]\(x^3 - 9x^2 + 5x - 45\)[/tex] by grouping is:
[tex]\[ x^2(x - 9) - 5(x - 9) \][/tex]

Which shows the final factored form as:
[tex]\[ (x - 9)(x^2 + 5) \][/tex]

Therefore, the correct choice is:
[tex]\[ x^2(x - 9) - 5(x - 9) \][/tex]