Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the average atomic mass of element [tex]$X$[/tex] given the two isotopes, we need to perform a weighted average calculation. Here are the steps:
1. Identify the masses and their corresponding abundances:
- Isotope X-63 has a mass of 62.9296 amu and an abundance of 69.15%.
- Isotope X-65 has a mass of 64.9278 amu and an abundance of 30.85%.
2. Convert abundance percentages to fractions:
- Abundance of X-63 as a fraction: [tex]\( \frac{69.15}{100} = 0.6915 \)[/tex]
- Abundance of X-65 as a fraction: [tex]\( \frac{30.85}{100} = 0.3085 \)[/tex]
3. Calculate the weighted average:
We multiply each mass by its corresponding fraction and then add the results:
[tex]\[ \text{Average Atomic Mass} = (62.9296 \times 0.6915) + (64.9278 \times 0.3085) \][/tex]
4. Perform the multiplication and addition:
- For X-63: [tex]\( 62.9296 \times 0.6915 = 43.5112 \)[/tex]
- For X-65: [tex]\( 64.9278 \times 0.3085 = 20.0348 \)[/tex]
- Add these values: [tex]\( 43.5112 + 20.0348 = 63.546 \)[/tex]
5. Round the result to the nearest hundredth:
- The average atomic mass rounded to the nearest hundredth is [tex]\( 63.55 \)[/tex].
Therefore, the average atomic mass of element [tex]\( X \)[/tex] is [tex]\( 63.55 \)[/tex] amu.
1. Identify the masses and their corresponding abundances:
- Isotope X-63 has a mass of 62.9296 amu and an abundance of 69.15%.
- Isotope X-65 has a mass of 64.9278 amu and an abundance of 30.85%.
2. Convert abundance percentages to fractions:
- Abundance of X-63 as a fraction: [tex]\( \frac{69.15}{100} = 0.6915 \)[/tex]
- Abundance of X-65 as a fraction: [tex]\( \frac{30.85}{100} = 0.3085 \)[/tex]
3. Calculate the weighted average:
We multiply each mass by its corresponding fraction and then add the results:
[tex]\[ \text{Average Atomic Mass} = (62.9296 \times 0.6915) + (64.9278 \times 0.3085) \][/tex]
4. Perform the multiplication and addition:
- For X-63: [tex]\( 62.9296 \times 0.6915 = 43.5112 \)[/tex]
- For X-65: [tex]\( 64.9278 \times 0.3085 = 20.0348 \)[/tex]
- Add these values: [tex]\( 43.5112 + 20.0348 = 63.546 \)[/tex]
5. Round the result to the nearest hundredth:
- The average atomic mass rounded to the nearest hundredth is [tex]\( 63.55 \)[/tex].
Therefore, the average atomic mass of element [tex]\( X \)[/tex] is [tex]\( 63.55 \)[/tex] amu.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.