Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To write the quadratic function [tex]\( f(x) = 3x^2 - 24x + 10 \)[/tex] in vertex form, let's follow through the steps:
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ f(x) = 3(x^2 - 8x) + 10 \][/tex]
2. Complete the square inside the parentheses. To do this, we use the formula [tex]\(\left( \frac{b}{2} \right)^2\)[/tex], where [tex]\( b \)[/tex] is the coefficient of [tex]\( x \)[/tex] in the expression [tex]\( x^2 - 8x \)[/tex]. Here, [tex]\( b = -8 \)[/tex], so:
[tex]\[ \left( \frac{-8}{2} \right)^2 = (-4)^2 = 16 \][/tex]
3. Add and subtract this square inside the parentheses:
[tex]\[ f(x) = 3(x^2 - 8x + 16 - 16) + 10 \][/tex]
This can be written as:
[tex]\[ f(x) = 3((x^2 - 8x + 16) - 16) + 10 \][/tex]
4. Rewriting the perfect square trinomial as a square of a binomial:
[tex]\[ f(x) = 3((x - 4)^2 - 16) + 10 \][/tex]
5. Distribute the 3 across the terms inside the parentheses:
[tex]\[ f(x) = 3(x - 4)^2 - 3 \times 16 + 10 \][/tex]
Simplifying further:
[tex]\[ f(x) = 3(x - 4)^2 - 48 + 10 \][/tex]
6. Combine the constants:
[tex]\[ f(x) = 3(x - 4)^2 - 38 \][/tex]
Therefore, the function written in vertex form is:
[tex]\[ f(x) = 3(x - 4)^2 - 38 \][/tex]
So, the correct choice is [tex]\( \boxed{f(x) = 3(x - 4)^2 - 38} \)[/tex].
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ f(x) = 3(x^2 - 8x) + 10 \][/tex]
2. Complete the square inside the parentheses. To do this, we use the formula [tex]\(\left( \frac{b}{2} \right)^2\)[/tex], where [tex]\( b \)[/tex] is the coefficient of [tex]\( x \)[/tex] in the expression [tex]\( x^2 - 8x \)[/tex]. Here, [tex]\( b = -8 \)[/tex], so:
[tex]\[ \left( \frac{-8}{2} \right)^2 = (-4)^2 = 16 \][/tex]
3. Add and subtract this square inside the parentheses:
[tex]\[ f(x) = 3(x^2 - 8x + 16 - 16) + 10 \][/tex]
This can be written as:
[tex]\[ f(x) = 3((x^2 - 8x + 16) - 16) + 10 \][/tex]
4. Rewriting the perfect square trinomial as a square of a binomial:
[tex]\[ f(x) = 3((x - 4)^2 - 16) + 10 \][/tex]
5. Distribute the 3 across the terms inside the parentheses:
[tex]\[ f(x) = 3(x - 4)^2 - 3 \times 16 + 10 \][/tex]
Simplifying further:
[tex]\[ f(x) = 3(x - 4)^2 - 48 + 10 \][/tex]
6. Combine the constants:
[tex]\[ f(x) = 3(x - 4)^2 - 38 \][/tex]
Therefore, the function written in vertex form is:
[tex]\[ f(x) = 3(x - 4)^2 - 38 \][/tex]
So, the correct choice is [tex]\( \boxed{f(x) = 3(x - 4)^2 - 38} \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.