Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find the expected value of the random variable with the given probability distribution.

Do not round your answer.

[tex]\[
\mu = ?
\][/tex]

\begin{tabular}{r|c}
[tex]$x$[/tex] & [tex]$P$[/tex] \\
\hline
-1 & 0.05 \\
1 & 0.18 \\
3 & 0.21 \\
5 & 0.23 \\
7 & 0.14 \\
9 & 0.19 \\
\end{tabular}


Sagot :

To find the expected value [tex]\(\mu\)[/tex] of a random variable with a given probability distribution, we use the formula for the expected value of a discrete random variable:

[tex]\[ \mu = \sum_{i} x_i \cdot P(x_i) \][/tex]

This means we multiply each possible value [tex]\(x_i\)[/tex] of the random variable by the corresponding probability [tex]\(P(x_i)\)[/tex] and then sum up all these products. Let's do this step by step with the given values.

Given:
[tex]\[ \begin{array}{r|c} x & P(x) \\ \hline -1 & 0.05 \\ 1 & 0.18 \\ 3 & 0.21 \\ 5 & 0.23 \\ 7 & 0.14 \\ 9 & 0.19 \\ \end{array} \][/tex]

1. Multiply each [tex]\(x\)[/tex] value by its corresponding probability:
- For [tex]\(x = -1\)[/tex]: [tex]\(-1 \cdot 0.05 = -0.05\)[/tex]
- For [tex]\(x = 1\)[/tex]: [tex]\(1 \cdot 0.18 = 0.18\)[/tex]
- For [tex]\(x = 3\)[/tex]: [tex]\(3 \cdot 0.21 = 0.63\)[/tex]
- For [tex]\(x = 5\)[/tex]: [tex]\(5 \cdot 0.23 = 1.15\)[/tex]
- For [tex]\(x = 7\)[/tex]: [tex]\(7 \cdot 0.14 = 0.98\)[/tex]
- For [tex]\(x = 9\)[/tex]: [tex]\(9 \cdot 0.19 = 1.71\)[/tex]

2. Sum up all these products:
[tex]\[ -0.05 + 0.18 + 0.63 + 1.15 + 0.98 + 1.71 \][/tex]

3. Perform the addition:
[tex]\[ -0.05 + 0.18 = 0.13 \][/tex]
[tex]\[ 0.13 + 0.63 = 0.76 \][/tex]
[tex]\[ 0.76 + 1.15 = 1.91 \][/tex]
[tex]\[ 1.91 + 0.98 = 2.89 \][/tex]
[tex]\[ 2.89 + 1.71 = 4.60 \][/tex]

Thus, the expected value [tex]\(\mu\)[/tex] of the random variable is:

[tex]\[ \mu = 4.6000000000000005 \][/tex]

Hence, the expected value of the given random variable is:

[tex]\(\mu = 4.6000000000000005\)[/tex].