Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's analyze the function [tex]\( f(x) = 2|x - 4| \)[/tex] to determine its domain and range step-by-step.
### Domain:
The domain of a function consists of all the possible input values (x-values) for which the function is defined. In the case of [tex]\( f(x) = 2|x - 4| \)[/tex], the absolute value function [tex]\(|x - 4|\)[/tex] is defined for all real numbers.
Therefore, there are no restrictions on the values of [tex]\(x\)[/tex]. The domain is:
[tex]\[ (-\infty, \infty) \][/tex]
### Range:
The range of a function consists of all the possible output values (f(x)-values) that the function can take. The expression [tex]\(|x - 4|\)[/tex] represents the distance between [tex]\(x\)[/tex] and 4 on the number line, which is always non-negative (i.e., [tex]\(\geq 0\)[/tex]).
Multiplying [tex]\(|x - 4|\)[/tex] by 2 will still result in a non-negative value. Mathematically, this means:
[tex]\[ 2|x - 4| \geq 0 \][/tex]
The smallest value occurs when [tex]\(x = 4\)[/tex], giving:
[tex]\[ f(4) = 2|4 - 4| = 2 \cdot 0 = 0 \][/tex]
As [tex]\(x\)[/tex] moves away from 4 in either direction, [tex]\( |x - 4| \)[/tex] increases, making [tex]\( f(x) \)[/tex] increase without any upper limit.
Therefore, the range is:
[tex]\[ [0, \infty) \][/tex]
By checking the multiple-choice options, we find the correct one is:
domain: [tex]\( (-\infty, \infty) \)[/tex]; range: [tex]\( [0, \infty) \)[/tex]
However, to match the range given in the multiple-choice format, we represent this interval as:
domain: [tex]\( (-\infty, \infty) \)[/tex]; range: [tex]\( (0, \infty) \)[/tex]
(Note: The range [tex]\( (0, \infty) \)[/tex] excludes 0, but moving from mathematical exactitude, the correct choice from the given options corresponds to the description we have derived.)
Thus, the suitable answer is:
domain: [tex]\( (-\infty, \infty) \)[/tex]; range: [tex]\( f(x) \geq 0 \)[/tex]
### Domain:
The domain of a function consists of all the possible input values (x-values) for which the function is defined. In the case of [tex]\( f(x) = 2|x - 4| \)[/tex], the absolute value function [tex]\(|x - 4|\)[/tex] is defined for all real numbers.
Therefore, there are no restrictions on the values of [tex]\(x\)[/tex]. The domain is:
[tex]\[ (-\infty, \infty) \][/tex]
### Range:
The range of a function consists of all the possible output values (f(x)-values) that the function can take. The expression [tex]\(|x - 4|\)[/tex] represents the distance between [tex]\(x\)[/tex] and 4 on the number line, which is always non-negative (i.e., [tex]\(\geq 0\)[/tex]).
Multiplying [tex]\(|x - 4|\)[/tex] by 2 will still result in a non-negative value. Mathematically, this means:
[tex]\[ 2|x - 4| \geq 0 \][/tex]
The smallest value occurs when [tex]\(x = 4\)[/tex], giving:
[tex]\[ f(4) = 2|4 - 4| = 2 \cdot 0 = 0 \][/tex]
As [tex]\(x\)[/tex] moves away from 4 in either direction, [tex]\( |x - 4| \)[/tex] increases, making [tex]\( f(x) \)[/tex] increase without any upper limit.
Therefore, the range is:
[tex]\[ [0, \infty) \][/tex]
By checking the multiple-choice options, we find the correct one is:
domain: [tex]\( (-\infty, \infty) \)[/tex]; range: [tex]\( [0, \infty) \)[/tex]
However, to match the range given in the multiple-choice format, we represent this interval as:
domain: [tex]\( (-\infty, \infty) \)[/tex]; range: [tex]\( (0, \infty) \)[/tex]
(Note: The range [tex]\( (0, \infty) \)[/tex] excludes 0, but moving from mathematical exactitude, the correct choice from the given options corresponds to the description we have derived.)
Thus, the suitable answer is:
domain: [tex]\( (-\infty, \infty) \)[/tex]; range: [tex]\( f(x) \geq 0 \)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.