Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Alright, let's tackle the question step-by-step.
### Part (a): Calculating Interest
#### For Bank A:
Bank A offers a yearly compound interest rate of 6%.
The formula for compound interest is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Here:
- [tex]\( P \)[/tex] is the principal amount = Rs. 50,000
- [tex]\( r \)[/tex] is the annual interest rate = 6% = 0.06
- [tex]\( t \)[/tex] is the time the money is invested for = 2 years
- [tex]\( n \)[/tex] is the number of times interest applied per time period, indicating 1 for yearly compounding.
So, substituting the values given:
[tex]\[ A_A = 50000 \left(1 + 0.06\right)^2 \][/tex]
[tex]\[ A_A = 50000 \left(1.06\right)^2 \][/tex]
[tex]\[ A_A = 50000 \times 1.1236 \approx 56180 \][/tex]
The interest earned can be calculated as:
[tex]\[ \text{Interest}_A = A_A - P \][/tex]
[tex]\[ \text{Interest}_A = 56180 - 50000 \][/tex]
[tex]\[ \text{Interest}_A = 6180.00 \][/tex]
#### For Bank B:
Bank B offers a half-yearly compound interest rate of 5%.
The formula for compound interest in this case remains the same, but we need to adjust [tex]\( n \)[/tex] to reflect half-yearly compounding.
Here:
- [tex]\( P \)[/tex] is the principal amount = Rs. 50,000
- [tex]\( r \)[/tex] is the annual interest rate = 5% = 0.05
- [tex]\( t \)[/tex] is the time the money is invested for = 2 years
- [tex]\( n \)[/tex] is the number of times interest applied per time period = 2 (since it's half-yearly).
So, substituting the values given:
[tex]\[ A_B = 50000 \left(1 + \frac{0.05}{2}\right)^{2 \times 2} \][/tex]
[tex]\[ A_B = 50000 \left(1 + 0.025\right)^4 \][/tex]
[tex]\[ A_B = 50000 \left(1.025\right)^4 \][/tex]
[tex]\[ A_B = 50000 \times 1.2155 \approx 55190.64 \][/tex]
The interest earned can be calculated as:
[tex]\[ \text{Interest}_B = A_B - P \][/tex]
[tex]\[ \text{Interest}_B = 55190.64 - 50000 \][/tex]
[tex]\[ \text{Interest}_B = 5190.64 \][/tex]
### Part (b): Which Bank to Save Money In and Why?
Now we need to compare the interests earned from both banks:
- Interest from Bank A: Rs 6180.00
- Interest from Bank B: Rs 5190.64
Clearly, the interest earned from Bank A is higher than that from Bank B.
Conclusion:
You should save your money in Bank A because, after 2 years, it will yield an interest of Rs 6180.00, which is higher than the interest earned from Bank B, which is Rs 5190.64. Therefore, choosing Bank A will provide you with better returns on your investment.
### Part (a): Calculating Interest
#### For Bank A:
Bank A offers a yearly compound interest rate of 6%.
The formula for compound interest is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Here:
- [tex]\( P \)[/tex] is the principal amount = Rs. 50,000
- [tex]\( r \)[/tex] is the annual interest rate = 6% = 0.06
- [tex]\( t \)[/tex] is the time the money is invested for = 2 years
- [tex]\( n \)[/tex] is the number of times interest applied per time period, indicating 1 for yearly compounding.
So, substituting the values given:
[tex]\[ A_A = 50000 \left(1 + 0.06\right)^2 \][/tex]
[tex]\[ A_A = 50000 \left(1.06\right)^2 \][/tex]
[tex]\[ A_A = 50000 \times 1.1236 \approx 56180 \][/tex]
The interest earned can be calculated as:
[tex]\[ \text{Interest}_A = A_A - P \][/tex]
[tex]\[ \text{Interest}_A = 56180 - 50000 \][/tex]
[tex]\[ \text{Interest}_A = 6180.00 \][/tex]
#### For Bank B:
Bank B offers a half-yearly compound interest rate of 5%.
The formula for compound interest in this case remains the same, but we need to adjust [tex]\( n \)[/tex] to reflect half-yearly compounding.
Here:
- [tex]\( P \)[/tex] is the principal amount = Rs. 50,000
- [tex]\( r \)[/tex] is the annual interest rate = 5% = 0.05
- [tex]\( t \)[/tex] is the time the money is invested for = 2 years
- [tex]\( n \)[/tex] is the number of times interest applied per time period = 2 (since it's half-yearly).
So, substituting the values given:
[tex]\[ A_B = 50000 \left(1 + \frac{0.05}{2}\right)^{2 \times 2} \][/tex]
[tex]\[ A_B = 50000 \left(1 + 0.025\right)^4 \][/tex]
[tex]\[ A_B = 50000 \left(1.025\right)^4 \][/tex]
[tex]\[ A_B = 50000 \times 1.2155 \approx 55190.64 \][/tex]
The interest earned can be calculated as:
[tex]\[ \text{Interest}_B = A_B - P \][/tex]
[tex]\[ \text{Interest}_B = 55190.64 - 50000 \][/tex]
[tex]\[ \text{Interest}_B = 5190.64 \][/tex]
### Part (b): Which Bank to Save Money In and Why?
Now we need to compare the interests earned from both banks:
- Interest from Bank A: Rs 6180.00
- Interest from Bank B: Rs 5190.64
Clearly, the interest earned from Bank A is higher than that from Bank B.
Conclusion:
You should save your money in Bank A because, after 2 years, it will yield an interest of Rs 6180.00, which is higher than the interest earned from Bank B, which is Rs 5190.64. Therefore, choosing Bank A will provide you with better returns on your investment.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.