At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's tackle part (a) and part (b) step-by-step.
### Part (a): Simplify [tex]\(\frac{12 t^2}{v} \div \frac{2 t^5}{v^3}\)[/tex]
To simplify [tex]\(\frac{12 t^2}{v} \div \frac{2 t^5}{v^3}\)[/tex], follow these steps:
1. Rewrite the Division as Multiplication by the Reciprocal:
[tex]\[ \frac{12 t^2}{v} \div \frac{2 t^5}{v^3} = \frac{12 t^2}{v} \times \frac{v^3}{2 t^5} \][/tex]
2. Combine the Fractions:
[tex]\[ \frac{12 t^2 \cdot v^3}{v \cdot 2 t^5} \][/tex]
3. Simplify the Coefficients:
[tex]\[ \frac{12 \cdot v^3}{2 \cdot v} = \frac{12}{2} \cdot \frac{v^3}{v} \][/tex]
[tex]\[ \frac{12}{2} = 6 \][/tex]
4. Simplify the Variable [tex]\(v\)[/tex]:
[tex]\[ \frac{v^3}{v} = v^{3-1} = v^2 \][/tex]
5. Combine [tex]\( t \)[/tex]-Terms:
[tex]\[ \frac{t^2}{t^5} = t^{2-5} = t^{-3} \][/tex]
6. Combine All Simplified Parts:
Putting it all together, we get:
[tex]\[ 6 \cdot v^2 \cdot t^{-3} = 6 v^2 t^{-3} \][/tex]
Thus, the simplified form of [tex]\(\frac{12 t^2}{v} \div \frac{2 t^5}{v^3}\)[/tex] is:
[tex]\[ 6 v^2 t^{-3} \][/tex]
### Part (b): Solve
Since part (b) doesn't provide specific details about what needs to be solved, I'll need more information to proceed accurately. If you have a specific equation or additional context for part (b), please provide it, and I'll be glad to help you solve it. For now, let's conclude part (a) as:
[tex]\[ \boxed{6 v^2 t^{-3}} \][/tex]
### Part (a): Simplify [tex]\(\frac{12 t^2}{v} \div \frac{2 t^5}{v^3}\)[/tex]
To simplify [tex]\(\frac{12 t^2}{v} \div \frac{2 t^5}{v^3}\)[/tex], follow these steps:
1. Rewrite the Division as Multiplication by the Reciprocal:
[tex]\[ \frac{12 t^2}{v} \div \frac{2 t^5}{v^3} = \frac{12 t^2}{v} \times \frac{v^3}{2 t^5} \][/tex]
2. Combine the Fractions:
[tex]\[ \frac{12 t^2 \cdot v^3}{v \cdot 2 t^5} \][/tex]
3. Simplify the Coefficients:
[tex]\[ \frac{12 \cdot v^3}{2 \cdot v} = \frac{12}{2} \cdot \frac{v^3}{v} \][/tex]
[tex]\[ \frac{12}{2} = 6 \][/tex]
4. Simplify the Variable [tex]\(v\)[/tex]:
[tex]\[ \frac{v^3}{v} = v^{3-1} = v^2 \][/tex]
5. Combine [tex]\( t \)[/tex]-Terms:
[tex]\[ \frac{t^2}{t^5} = t^{2-5} = t^{-3} \][/tex]
6. Combine All Simplified Parts:
Putting it all together, we get:
[tex]\[ 6 \cdot v^2 \cdot t^{-3} = 6 v^2 t^{-3} \][/tex]
Thus, the simplified form of [tex]\(\frac{12 t^2}{v} \div \frac{2 t^5}{v^3}\)[/tex] is:
[tex]\[ 6 v^2 t^{-3} \][/tex]
### Part (b): Solve
Since part (b) doesn't provide specific details about what needs to be solved, I'll need more information to proceed accurately. If you have a specific equation or additional context for part (b), please provide it, and I'll be glad to help you solve it. For now, let's conclude part (a) as:
[tex]\[ \boxed{6 v^2 t^{-3}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.