Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Use synthetic division and the Remainder Theorem to evaluate [tex]\( P(c) \)[/tex].

[tex]\[ P(x) = 2x^2 + 13x + 3, \quad c = -4 \][/tex]

[tex]\[ P(-4) = \square \][/tex]

Sagot :

Sure, let's use synthetic division and the Remainder Theorem to evaluate [tex]\( P(c) \)[/tex] for [tex]\( P(x) = 2x^2 + 13x + 3 \)[/tex] and [tex]\( c = -4 \)[/tex].

### Steps for Synthetic Division:

1. Write down the coefficients of the polynomial [tex]\( P(x) = 2x^2 + 13x + 3 \)[/tex]. These coefficients are:
[tex]\[ 2, \quad 13, \quad 3 \][/tex]

2. Set up the synthetic division with [tex]\( c = -4 \)[/tex]. The first coefficient (2) is brought down as is.

[tex]\[ \begin{array}{r|rrr} -4 & 2 & 13 & 3 \\ & & & \\ \hline & 2 & & \end{array} \][/tex]

3. Multiply and add. Multiply the number that you just brought down by [tex]\( c \)[/tex] and write the result under the next coefficient. Then add the numbers in the column.

[tex]\[ \begin{array}{r|rrr} -4 & 2 & 13 & 3 \\ & & -8 & \\ \hline & 2 & 5 & \end{array} \][/tex]

4. Repeat the process: Continue multiplying and adding.

[tex]\[ \begin{array}{r|rrr} -4 & 2 & 13 & 3 \\ & & -8 & -20\\ \hline & 2 & 5 & -17 \end{array} \][/tex]

5. The last number in the bottom row is the remainder and it gives [tex]\( P(-4) \)[/tex] for the polynomial [tex]\( P(x) \)[/tex].

Thus, using the remainder theorem, we find:

[tex]\[ P(-4) = -17 \][/tex]

So, [tex]\( P(-4) = -17 \)[/tex].