Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the radius of the soup can, we start with the information given:
1. The volume of the soup can (V) is 360 mL (since 1 mL is equivalent to 1 cm³, this is 360 cm³).
2. The height (h) of the can is 17 cm.
The formula for the volume of a cylinder is given by:
[tex]\[ V = \pi r^2 h \][/tex]
Where:
- [tex]\( V \)[/tex] is the volume
- [tex]\( r \)[/tex] is the radius
- [tex]\( h \)[/tex] is the height
- [tex]\( \pi \)[/tex] (pi) is a constant approximately equal to 3.14159
We need to solve for the radius [tex]\( r \)[/tex]. Rearrange the volume formula to isolate [tex]\( r \)[/tex]:
[tex]\[ r^2 = \frac{V}{\pi h} \][/tex]
Then, take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{V}{\pi h}} \][/tex]
Substitute the given values into the equation:
[tex]\[ r = \sqrt{\frac{360}{3.14159 \times 17}} \][/tex]
After evaluating the expression inside the square root and taking the square root, we obtain:
[tex]\[ r \approx 2.596281945921045 \][/tex]
Therefore, the radius of the soup can is approximately 2.60 cm.
Here is a diagram of the soup can for better understanding:

In this diagram:
- The height (h) is labeled as 17 cm.
- The radius (r) from the center to the side is labeled as approximately 2.60 cm.
- The entire volume of the can is 360 cm³.
The radius of the soup can is approximately 2.60 cm.
1. The volume of the soup can (V) is 360 mL (since 1 mL is equivalent to 1 cm³, this is 360 cm³).
2. The height (h) of the can is 17 cm.
The formula for the volume of a cylinder is given by:
[tex]\[ V = \pi r^2 h \][/tex]
Where:
- [tex]\( V \)[/tex] is the volume
- [tex]\( r \)[/tex] is the radius
- [tex]\( h \)[/tex] is the height
- [tex]\( \pi \)[/tex] (pi) is a constant approximately equal to 3.14159
We need to solve for the radius [tex]\( r \)[/tex]. Rearrange the volume formula to isolate [tex]\( r \)[/tex]:
[tex]\[ r^2 = \frac{V}{\pi h} \][/tex]
Then, take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{V}{\pi h}} \][/tex]
Substitute the given values into the equation:
[tex]\[ r = \sqrt{\frac{360}{3.14159 \times 17}} \][/tex]
After evaluating the expression inside the square root and taking the square root, we obtain:
[tex]\[ r \approx 2.596281945921045 \][/tex]
Therefore, the radius of the soup can is approximately 2.60 cm.
Here is a diagram of the soup can for better understanding:

In this diagram:
- The height (h) is labeled as 17 cm.
- The radius (r) from the center to the side is labeled as approximately 2.60 cm.
- The entire volume of the can is 360 cm³.
The radius of the soup can is approximately 2.60 cm.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.