Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's analyze each of the given relations step-by-step to determine their gradients and y-intercepts.
### Part a: [tex]\( y = 2x - 4 \)[/tex]
This equation is already in the slope-intercept form, which is [tex]\( y = mx + b \)[/tex].
- The slope (or gradient) is the coefficient of [tex]\( x \)[/tex]. Here, [tex]\( m = 2 \)[/tex].
- The y-intercept is the constant term, which is the value of [tex]\( y \)[/tex] when [tex]\( x = 0 \)[/tex]. Here, [tex]\( b = -4 \)[/tex].
So for [tex]\( y = 2x - 4 \)[/tex]:
- Gradient (slope) = 2
- Y-intercept = -4
### Part b: [tex]\( x + 3y = 6 \)[/tex]
For this equation, we need to rearrange it into the slope-intercept form [tex]\( y = mx + b \)[/tex].
Starting from:
[tex]\[ x + 3y = 6 \][/tex]
Step 1: Isolate the [tex]\( y \)[/tex]-term by moving [tex]\( x \)[/tex] to the other side:
[tex]\[ 3y = -x + 6 \][/tex]
Step 2: Solve for [tex]\( y \)[/tex] by dividing every term by 3:
[tex]\[ y = -\frac{1}{3}x + 2 \][/tex]
Now, the equation is in slope-intercept form [tex]\( y = mx + b \)[/tex]:
- The slope (or gradient) is the coefficient of [tex]\( x \)[/tex]. Here, [tex]\( m = -\frac{1}{3} \)[/tex].
- The y-intercept is the constant term, which is the value of [tex]\( y \)[/tex] when [tex]\( x = 0 \)[/tex]. Here, [tex]\( b = 2 \)[/tex].
So for [tex]\( x + 3y = 6 \)[/tex]:
- Gradient (slope) = -[tex]\(\frac{1}{3}\)[/tex]
- Y-intercept = 2
### Summary of Results
1. For [tex]\( y = 2x - 4 \)[/tex]:
- Gradient (slope) = 2
- Y-intercept = -4
2. For [tex]\( x + 3y = 6 \)[/tex]:
- Gradient (slope) = -[tex]\(\frac{1}{3}\)[/tex]
- Y-intercept = 2
### Sketching the Graphs
To sketch the graphs of these two equations:
1. [tex]\( y = 2x - 4 \)[/tex]:
- Start at the y-intercept (-4) on the y-axis.
- From this point, use the slope to determine the next point. Since the slope is 2, for every 1 unit you move to the right on the x-axis, move 2 units up.
2. [tex]\( x + 3y = 6 \)[/tex]:
- Start at the y-intercept (2) on the y-axis.
- From this point, use the slope to determine the next point. Since the slope is -[tex]\(\frac{1}{3}\)[/tex], for every 3 units you move to the right on the x-axis, move 1 unit down. Alternatively, for every 1 unit you move to the right, move [tex]\( \frac{1}{3} \)[/tex] unit down.
By plotting these points and drawing the lines through them, you will obtain the respective graphs of the given relations.
### Part a: [tex]\( y = 2x - 4 \)[/tex]
This equation is already in the slope-intercept form, which is [tex]\( y = mx + b \)[/tex].
- The slope (or gradient) is the coefficient of [tex]\( x \)[/tex]. Here, [tex]\( m = 2 \)[/tex].
- The y-intercept is the constant term, which is the value of [tex]\( y \)[/tex] when [tex]\( x = 0 \)[/tex]. Here, [tex]\( b = -4 \)[/tex].
So for [tex]\( y = 2x - 4 \)[/tex]:
- Gradient (slope) = 2
- Y-intercept = -4
### Part b: [tex]\( x + 3y = 6 \)[/tex]
For this equation, we need to rearrange it into the slope-intercept form [tex]\( y = mx + b \)[/tex].
Starting from:
[tex]\[ x + 3y = 6 \][/tex]
Step 1: Isolate the [tex]\( y \)[/tex]-term by moving [tex]\( x \)[/tex] to the other side:
[tex]\[ 3y = -x + 6 \][/tex]
Step 2: Solve for [tex]\( y \)[/tex] by dividing every term by 3:
[tex]\[ y = -\frac{1}{3}x + 2 \][/tex]
Now, the equation is in slope-intercept form [tex]\( y = mx + b \)[/tex]:
- The slope (or gradient) is the coefficient of [tex]\( x \)[/tex]. Here, [tex]\( m = -\frac{1}{3} \)[/tex].
- The y-intercept is the constant term, which is the value of [tex]\( y \)[/tex] when [tex]\( x = 0 \)[/tex]. Here, [tex]\( b = 2 \)[/tex].
So for [tex]\( x + 3y = 6 \)[/tex]:
- Gradient (slope) = -[tex]\(\frac{1}{3}\)[/tex]
- Y-intercept = 2
### Summary of Results
1. For [tex]\( y = 2x - 4 \)[/tex]:
- Gradient (slope) = 2
- Y-intercept = -4
2. For [tex]\( x + 3y = 6 \)[/tex]:
- Gradient (slope) = -[tex]\(\frac{1}{3}\)[/tex]
- Y-intercept = 2
### Sketching the Graphs
To sketch the graphs of these two equations:
1. [tex]\( y = 2x - 4 \)[/tex]:
- Start at the y-intercept (-4) on the y-axis.
- From this point, use the slope to determine the next point. Since the slope is 2, for every 1 unit you move to the right on the x-axis, move 2 units up.
2. [tex]\( x + 3y = 6 \)[/tex]:
- Start at the y-intercept (2) on the y-axis.
- From this point, use the slope to determine the next point. Since the slope is -[tex]\(\frac{1}{3}\)[/tex], for every 3 units you move to the right on the x-axis, move 1 unit down. Alternatively, for every 1 unit you move to the right, move [tex]\( \frac{1}{3} \)[/tex] unit down.
By plotting these points and drawing the lines through them, you will obtain the respective graphs of the given relations.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.