Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Matemática

Suponha que um avião decole sob um ângulo constante de [tex]\(18^{\circ}\)[/tex].

[tex]\[
\begin{tabular}{|c|c|c|c|}
\hline
Ângulo & \(\sin\) & \(\cos\) & \(\tan\) \\
\hline
\(18^{\circ}\) & 0,31 & 0,95 & 0,32 \\
\hline
\end{tabular}
\][/tex]


Sagot :

Vamos resolver a questão passo a passo. O enunciado nos dá a informação de que um avião decola sob um ângulo constante de [tex]\( 18^{\circ} \)[/tex] e também nos fornece os valores das funções trigonométricas sen, cos e tg desse ângulo. Vamos explorar esses valores mais a fundo.

### Passo 1: Identificar os valores fornecidos

O problema nos forneceu uma tabela com os seguintes valores:

- [tex]\( \sin(18^{\circ}) = 0.31 \)[/tex]
- [tex]\( \cos(18^{\circ}) = 0.95 \)[/tex]
- [tex]\( \tan(18^{\circ}) = 0.32 \)[/tex]

### Passo 2: Entendimento das funções trigonométricas

- Seno ([tex]\(\sin\)[/tex]): O seno de um ângulo em um triângulo retângulo é a razão entre o comprimento do cateto oposto ao ângulo e o comprimento da hipotenusa.

- Cosseno ([tex]\(\cos\)[/tex]): O cosseno de um ângulo em um triângulo retângulo é a razão entre o comprimento do cateto adjacente ao ângulo e o comprimento da hipotenusa.

- Tangente ([tex]\(\tan\)[/tex]): A tangente de um ângulo em um triângulo retângulo é a razão entre o comprimento do cateto oposto ao ângulo e o comprimento do cateto adjacente.

### Passo 3: Aplicações práticas

Para um avião que decola a [tex]\( 18^{\circ} \)[/tex]:

- Se quisermos calcular a altitude [tex]\( h \)[/tex] atingida pelo avião em um determinado ponto, podemos usar a função seno:
[tex]\[ h = d \times \sin(18^{\circ}) \][/tex]
onde [tex]\( d \)[/tex] é a distância percorrida pelo avião ao longo da linha de voo (hipotenusa).

- Se quisermos saber a distância horizontal [tex]\( x \)[/tex] percorrida ao mesmo ponto, podemos usar a função cosseno:
[tex]\[ x = d \times \cos(18^{\circ}) \][/tex]

- A tangente pode ser útil para determinar a relação entre a altitude e a distância horizontal:
[tex]\[ \tan(18^{\circ}) = \frac{h}{x} \][/tex]

### Exemplo numérico

Vamos assumir que o avião percorre uma distância [tex]\( d = 1000 \)[/tex] metros ao longo de sua linha de voo.

- Altitude [tex]\( h \)[/tex]:
[tex]\[ h = 1000 \times \sin(18^{\circ}) = 1000 \times 0.31 = 310 \text{ metros} \][/tex]

- Distância horizontal [tex]\( x \)[/tex]:
[tex]\[ x = 1000 \times \cos(18^{\circ}) = 1000 \times 0.95 = 950 \text{ metros} \][/tex]

- Verificação da tangente:
[tex]\[ \tan(18^{\circ}) = \frac{h}{x} = \frac{310}{950} \approx 0.326 \approx 0.32 \][/tex]

### Conclusão

Os valores fornecidos das funções trigonométricas para [tex]\( 18^{\circ} \)[/tex] se mostram consistentes e podemos usá-los para resolver problemas envolvendo triângulos retângulos, como calcular a altura ou distância percorrida por um avião decolando a esse ângulo. Os valores ajudam em aplicações práticas e podem simplificar bastante a solução de problemas que envolvem ângulos de subida.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.