Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the equation of the line of best fit for Natalie's data, follow these steps:
1. Collect the data points:
- Arm lengths (in cm): [tex]\[25, 35, 30, 0, 4, 3, 4, None, 20, None\][/tex]
- Distances (in cm): [tex]\[4011, 1294, None, 4, 4054, 2011, 24, None, 373, 338\][/tex]
2. Exclude missing data:
- Only include pairs where both arm length and distance are present.
- Valid pairs are:
[tex]\[ \begin{align*} (25, 4011), \\ (35, 1294), \\ (0, 4), \\ (4, 4054), \\ (3, 2011), \\ (4, 24), \\ (20, 373). \end{align*} \][/tex]
3. Calculate the line of best fit:
- Using linear regression, determine the slope (m) and intercept (b) for the line. After performing these calculations, you get:
[tex]\[ \begin{align*} \text{slope} (m) &= 20.168772563176898, \\ \text{intercept} (b) &= 1419.377385250129. \end{align*} \][/tex]
4. Form the equation of the line:
- The equation of the line of best fit is in the form [tex]\( y = mx + b \)[/tex].
- Plug in the calculated values for [tex]\(m\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ y = 20.168772563176898x + 1419.377385250129. \][/tex]
5. Round the numbers to the nearest tenth:
- Slope ([tex]\(m\)[/tex]) rounded to the nearest tenth is [tex]\(20.2\)[/tex].
- Intercept ([tex]\(b\)[/tex]) rounded to the nearest tenth is [tex]\(1419.4\)[/tex].
6. Write the final equation:
[tex]\[ y = 20.2x + 1419.4. \][/tex]
Therefore, the equation of the line of best fit for Natalie's data is [tex]\( y = 20.2x + 1419.4 \)[/tex].
1. Collect the data points:
- Arm lengths (in cm): [tex]\[25, 35, 30, 0, 4, 3, 4, None, 20, None\][/tex]
- Distances (in cm): [tex]\[4011, 1294, None, 4, 4054, 2011, 24, None, 373, 338\][/tex]
2. Exclude missing data:
- Only include pairs where both arm length and distance are present.
- Valid pairs are:
[tex]\[ \begin{align*} (25, 4011), \\ (35, 1294), \\ (0, 4), \\ (4, 4054), \\ (3, 2011), \\ (4, 24), \\ (20, 373). \end{align*} \][/tex]
3. Calculate the line of best fit:
- Using linear regression, determine the slope (m) and intercept (b) for the line. After performing these calculations, you get:
[tex]\[ \begin{align*} \text{slope} (m) &= 20.168772563176898, \\ \text{intercept} (b) &= 1419.377385250129. \end{align*} \][/tex]
4. Form the equation of the line:
- The equation of the line of best fit is in the form [tex]\( y = mx + b \)[/tex].
- Plug in the calculated values for [tex]\(m\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ y = 20.168772563176898x + 1419.377385250129. \][/tex]
5. Round the numbers to the nearest tenth:
- Slope ([tex]\(m\)[/tex]) rounded to the nearest tenth is [tex]\(20.2\)[/tex].
- Intercept ([tex]\(b\)[/tex]) rounded to the nearest tenth is [tex]\(1419.4\)[/tex].
6. Write the final equation:
[tex]\[ y = 20.2x + 1419.4. \][/tex]
Therefore, the equation of the line of best fit for Natalie's data is [tex]\( y = 20.2x + 1419.4 \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.