Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Which statement describes the domain of the function [tex]\( f(x) = \frac{3x}{4x^2 - 4} \)[/tex]?

A. All real numbers
B. All nonzero real numbers
C. All real numbers except [tex]\( x = \frac{3}{4} \)[/tex]
D. All real numbers except [tex]\( x = -1 \)[/tex] and [tex]\( x = 1 \)[/tex]


Sagot :

To determine the domain of the function [tex]\( f(x) = \frac{3x}{4x^2 - 4} \)[/tex], we need to identify the values of [tex]\( x \)[/tex] for which the function is undefined. This happens when the denominator is zero, as division by zero is undefined.

The denominator of the function is given by:
[tex]\[ 4x^2 - 4 \][/tex]

To find the values of [tex]\( x \)[/tex] that make the denominator zero, solve the equation:
[tex]\[ 4x^2 - 4 = 0 \][/tex]

First, factor out the common factor:
[tex]\[ 4(x^2 - 1) = 0 \][/tex]

Next, recognize that [tex]\( x^2 - 1 \)[/tex] is a difference of squares, which can be factored further:
[tex]\[ 4(x + 1)(x - 1) = 0 \][/tex]

For the product to be zero, at least one of the factors must be zero:
[tex]\[ x + 1 = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]

Solving these equations, we get:
[tex]\[ x = -1 \quad \text{or} \quad x = 1 \][/tex]

Thus, the function [tex]\( f(x) = \frac{3x}{4x^2 - 4} \)[/tex] is undefined at [tex]\( x = -1 \)[/tex] and [tex]\( x = 1 \)[/tex]. Therefore, these values must be excluded from the domain.

The domain of the function is all real numbers except [tex]\( x = -1 \)[/tex] and [tex]\( x = 1 \)[/tex].

Therefore, the correct statement describing the domain of the function is:
"all real numbers except [tex]\( x = -1 \)[/tex] and [tex]\( x = 1 \)[/tex]".
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.