Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the type of function that best models the data of the company's workforce growth, let's analyze the given information step by step.
1. Construct the Differences Between Consecutive Years:
Calculate the differences between the number of employees for consecutive years to understand the growth pattern.
[tex]\[ \begin{array}{c|c} \text{Years} & \text{Difference} \\ \hline 2-1 & 348 - 100 = 248 \\ 3-2 & 405 - 348 = 57 \\ 4-3 & 575 - 405 = 170 \\ 5-4 & 654 - 575 = 79 \\ 6-5 & 704 - 654 = 50 \\ 7-6 & 746 - 704 = 42 \\ \end{array} \][/tex]
So the differences between consecutive years are:
[tex]\[ [248, 57, 170, 79, 50, 42] \][/tex]
2. Construct the Second Differences (Differences of Differences):
Calculate the differences between consecutive differences to understand if the change is consistent (indicative of a quadratic function).
[tex]\[ \begin{array}{c|c} \text{Years} & \text{Second Difference} \\ \hline 3-2 & 57 - 248 = -191 \\ 4-3 & 170 - 57 = 113 \\ 5-4 & 79 - 170 = -91 \\ 6-5 & 50 - 79 = -29 \\ 7-6 & 42 - 50 = -8 \\ \end{array} \][/tex]
So the second differences are:
[tex]\[ [-191, 113, -91, -29, -8] \][/tex]
3. Evaluate Consistency of Second Differences:
For the data to be modeled well by a quadratic function, the second differences should be consistent.
Given:
[tex]\[ [-191, 113, -91, -29, -8] \][/tex]
The second differences are not consistent, suggesting that the function might not be a pure quadratic function straightforwardly.
4. Choosing the Best Function Model:
- A (Square Root Function): Typically involves a slower growth initially followed by faster growth, which doesn't fit our data.
- B (Quadratic Function with Negative [tex]\(a\)[/tex]): This would suggest the number of employees might eventually decrease, which isn't supported by our data.
- C (Linear Function with Positive Slope): Linear functions imply equal increments year over year, which isn’t the case here as the differences fluctuate considerably.
- D (Quadratic Function with Positive [tex]\(a\)[/tex]): Despite the second differences not being perfectly consistent, we observed that the rate of change is initially rapid and then slows down, a behavior characteristic of a quadratic function with a positive value of [tex]\(a\)[/tex].
Upon considering all these points, the type of function that best fits the data is:
[tex]\[ \boxed{D \text{. a quadratic function with a positive value of } a} \][/tex]
1. Construct the Differences Between Consecutive Years:
Calculate the differences between the number of employees for consecutive years to understand the growth pattern.
[tex]\[ \begin{array}{c|c} \text{Years} & \text{Difference} \\ \hline 2-1 & 348 - 100 = 248 \\ 3-2 & 405 - 348 = 57 \\ 4-3 & 575 - 405 = 170 \\ 5-4 & 654 - 575 = 79 \\ 6-5 & 704 - 654 = 50 \\ 7-6 & 746 - 704 = 42 \\ \end{array} \][/tex]
So the differences between consecutive years are:
[tex]\[ [248, 57, 170, 79, 50, 42] \][/tex]
2. Construct the Second Differences (Differences of Differences):
Calculate the differences between consecutive differences to understand if the change is consistent (indicative of a quadratic function).
[tex]\[ \begin{array}{c|c} \text{Years} & \text{Second Difference} \\ \hline 3-2 & 57 - 248 = -191 \\ 4-3 & 170 - 57 = 113 \\ 5-4 & 79 - 170 = -91 \\ 6-5 & 50 - 79 = -29 \\ 7-6 & 42 - 50 = -8 \\ \end{array} \][/tex]
So the second differences are:
[tex]\[ [-191, 113, -91, -29, -8] \][/tex]
3. Evaluate Consistency of Second Differences:
For the data to be modeled well by a quadratic function, the second differences should be consistent.
Given:
[tex]\[ [-191, 113, -91, -29, -8] \][/tex]
The second differences are not consistent, suggesting that the function might not be a pure quadratic function straightforwardly.
4. Choosing the Best Function Model:
- A (Square Root Function): Typically involves a slower growth initially followed by faster growth, which doesn't fit our data.
- B (Quadratic Function with Negative [tex]\(a\)[/tex]): This would suggest the number of employees might eventually decrease, which isn't supported by our data.
- C (Linear Function with Positive Slope): Linear functions imply equal increments year over year, which isn’t the case here as the differences fluctuate considerably.
- D (Quadratic Function with Positive [tex]\(a\)[/tex]): Despite the second differences not being perfectly consistent, we observed that the rate of change is initially rapid and then slows down, a behavior characteristic of a quadratic function with a positive value of [tex]\(a\)[/tex].
Upon considering all these points, the type of function that best fits the data is:
[tex]\[ \boxed{D \text{. a quadratic function with a positive value of } a} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.