Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To identify which of the given exponential functions has a growth factor of 5, we need to examine the structure of each function closely.
### Understanding Exponential Functions
An exponential function is generally of the form:
[tex]\[ f(x) = a \cdot b^x \][/tex]
where:
- [tex]\( a \)[/tex] is a constant term (also called the coefficient or initial value),
- [tex]\( b \)[/tex] is the base (also called the growth factor if [tex]\( b > 1 \)[/tex] or decay factor if [tex]\( 0 < b < 1 \)[/tex]),
- [tex]\( x \)[/tex] is the exponent.
### Given Exponential Functions
We are provided with two functions:
1. [tex]\( f(x) = 2 \cdot 5^x \)[/tex]
2. [tex]\( f(x) = 0.5 \cdot 2^x \)[/tex]
### Analyzing the Functions
Let's identify the growth factor in each function by focusing on the base [tex]\( b \)[/tex]:
1. For the function [tex]\( f(x) = 2 \cdot 5^x \)[/tex]:
- The base [tex]\( b \)[/tex] is [tex]\( 5 \)[/tex].
- Therefore, the growth factor for this function is [tex]\( 5 \)[/tex].
2. For the function [tex]\( f(x) = 0.5 \cdot 2^x \)[/tex]:
- The base [tex]\( b \)[/tex] is [tex]\( 2 \)[/tex].
- Consequently, the growth factor for this function is [tex]\( 2 \)[/tex].
### Conclusion
Given that we need to identify the function which has a growth factor of [tex]\( 5 \)[/tex]:
- The function with the growth factor of [tex]\( 5 \)[/tex] is [tex]\( f(x) = 2 \cdot 5^x \)[/tex].
Thus, the exponential function that has a growth factor of 5 is [tex]\( f(x) = 2 \cdot 5^x \)[/tex].
### Understanding Exponential Functions
An exponential function is generally of the form:
[tex]\[ f(x) = a \cdot b^x \][/tex]
where:
- [tex]\( a \)[/tex] is a constant term (also called the coefficient or initial value),
- [tex]\( b \)[/tex] is the base (also called the growth factor if [tex]\( b > 1 \)[/tex] or decay factor if [tex]\( 0 < b < 1 \)[/tex]),
- [tex]\( x \)[/tex] is the exponent.
### Given Exponential Functions
We are provided with two functions:
1. [tex]\( f(x) = 2 \cdot 5^x \)[/tex]
2. [tex]\( f(x) = 0.5 \cdot 2^x \)[/tex]
### Analyzing the Functions
Let's identify the growth factor in each function by focusing on the base [tex]\( b \)[/tex]:
1. For the function [tex]\( f(x) = 2 \cdot 5^x \)[/tex]:
- The base [tex]\( b \)[/tex] is [tex]\( 5 \)[/tex].
- Therefore, the growth factor for this function is [tex]\( 5 \)[/tex].
2. For the function [tex]\( f(x) = 0.5 \cdot 2^x \)[/tex]:
- The base [tex]\( b \)[/tex] is [tex]\( 2 \)[/tex].
- Consequently, the growth factor for this function is [tex]\( 2 \)[/tex].
### Conclusion
Given that we need to identify the function which has a growth factor of [tex]\( 5 \)[/tex]:
- The function with the growth factor of [tex]\( 5 \)[/tex] is [tex]\( f(x) = 2 \cdot 5^x \)[/tex].
Thus, the exponential function that has a growth factor of 5 is [tex]\( f(x) = 2 \cdot 5^x \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.