Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Julian simplifies the polynomial and writes it in standard form:

[tex]\[ 4x^2y^2 - 2y^4 - 8xy^3 + 9x^3y + 6y^4 - 2xy^3 - 3x^4 + x^2y^2 \][/tex]

If Julian wrote the last term as [tex]\(-3x^4\)[/tex], which must be the first term of his polynomial in standard form?

A. [tex]\(4y^4\)[/tex]
B. [tex]\(6y^4\)[/tex]
C. [tex]\(-2xy^3\)[/tex]
D. [tex]\(-10xy^3\)[/tex]


Sagot :

Let's go through the process of fully simplifying the given polynomial and writing it in standard form:

The given polynomial is:
[tex]\[ 4 x^2 y^2 - 2 y^4 - 8 x y^3 + 9 x^3 y + 6 y^4 - 2 x y^3 - 3 x^4 + x^2 y^2 \][/tex]

First, let's combine like terms:

1. Combine the [tex]\(y^4\)[/tex] terms:
[tex]\[ -2 y^4 + 6 y^4 = 4 y^4 \][/tex]

2. Combine the [tex]\(x^2 y^2\)[/tex] terms:
[tex]\[ 4 x^2 y^2 + x^2 y^2 = 5 x^2 y^2 \][/tex]

3. Combine the [tex]\(x y^3\)[/tex] terms:
[tex]\[ -8 x y^3 - 2 x y^3 = -10 x y^3 \][/tex]

4. Identify the only [tex]\(x^3 y\)[/tex] term, which is:
[tex]\[ 9 x^3 y \][/tex]

5. Identify the only [tex]\(x^4\)[/tex] term, which is:
[tex]\[ -3 x^4 \][/tex]

Now, rewrite the polynomial with the combined like terms:
[tex]\[ -3 x^4 + 9 x^3 y + 5 x^2 y^2 - 10 x y^3 + 4 y^4 \][/tex]

Next, let's write this polynomial in standard form, which means arranging the terms in descending powers of [tex]\(x\)[/tex]:

[tex]\[ -3 x^4 + 9 x^3 y + 5 x^2 y^2 - 10 x y^3 + 4 y^4 \][/tex]

The polynomial in standard form is:
[tex]\[ -3 x^4 + 9 x^3 y + 5 x^2 y^2 - 10 x y^3 + 4 y^4 \][/tex]

Now, let's consider the question: If the last term of Julian's polynomial is [tex]\( -3 x^4 \)[/tex], we can observe that this is indeed the first term of the polynomial. Therefore, the first term in standard form is [tex]\( -3 x^4 \)[/tex].

Given the four options provided:
- [tex]\(4 y^4\)[/tex]
- [tex]\(6 y^4\)[/tex]
- [tex]\(-2 x y^3\)[/tex]
- [tex]\(-10 x y^3\)[/tex]

We can see that the correct first term in Julian's polynomial in standard form, which corresponds to the provided [tex]\( -3 x^4 \)[/tex] is:

[tex]\[ 4 y^4 \][/tex]

Thus, the answer is:
[tex]\[ \boxed{4 y^4} \][/tex]