Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, you need to apply Coulomb's law, which quantifies the electrostatic force between two point charges. Coulomb's law is given by the formula:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the magnitude of the force between the charges,
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \)[/tex],
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
Let's plug in the given values.
1. Convert the charges from microcoulombs (μC) to coulombs (C):
- [tex]\( q_1 = -6 \, \mu C = -6 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( q_2 = 3 \, \mu C = 3 \times 10^{-6} \, \text{C} \)[/tex]
2. Substitute the known values into Coulomb's law:
- [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \)[/tex]
- [tex]\( r = 0.002 \, \text{m} \)[/tex]
[tex]\[ F = 8.99 \times 10^9 \cdot \frac{|-6 \times 10^{-6} \cdot 3 \times 10^{-6}|}{(0.002)^2} \][/tex]
3. Calculate the product of the charges:
[tex]\[ |-6 \times 10^{-6} \cdot 3 \times 10^{-6}| = 18 \times 10^{-12} \][/tex]
4. Calculate the distance squared:
[tex]\[ (0.002)^2 = 4 \times 10^{-6} \][/tex]
5. Substitute these values into the formula:
[tex]\[ F = 8.99 \times 10^9 \cdot \frac{18 \times 10^{-12}}{4 \times 10^{-6}} \][/tex]
6. Simplify the fraction:
[tex]\[ \frac{18 \times 10^{-12}}{4 \times 10^{-6}} = 4.5 \times 10^{-6} \][/tex]
7. Calculate the final force magnitude:
[tex]\[ F = 8.99 \times 10^9 \cdot 4.5 \times 10^{-6} = 40455 \, \text{N} \][/tex]
The magnitude of the force is approximately [tex]\( 40455 \, \text{N} \)[/tex].
To determine the direction:
- [tex]\( q_1 \)[/tex] is negative.
- [tex]\( q_2 \)[/tex] is positive.
- Since opposite charges attract, the force on [tex]\( q_2 \)[/tex] due to [tex]\( q_1 \)[/tex] will be towards [tex]\( q_1 \)[/tex]. Since [tex]\( q_1 \)[/tex] is north of [tex]\( q_2 \)[/tex], the force on [tex]\( q_2 \)[/tex] will be directed south.
Therefore, the correct answer is:
- Magnitude: [tex]\( 4 \times 10^4 \, \text{N} \)[/tex]
- Direction: South
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the magnitude of the force between the charges,
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \)[/tex],
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
Let's plug in the given values.
1. Convert the charges from microcoulombs (μC) to coulombs (C):
- [tex]\( q_1 = -6 \, \mu C = -6 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( q_2 = 3 \, \mu C = 3 \times 10^{-6} \, \text{C} \)[/tex]
2. Substitute the known values into Coulomb's law:
- [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \)[/tex]
- [tex]\( r = 0.002 \, \text{m} \)[/tex]
[tex]\[ F = 8.99 \times 10^9 \cdot \frac{|-6 \times 10^{-6} \cdot 3 \times 10^{-6}|}{(0.002)^2} \][/tex]
3. Calculate the product of the charges:
[tex]\[ |-6 \times 10^{-6} \cdot 3 \times 10^{-6}| = 18 \times 10^{-12} \][/tex]
4. Calculate the distance squared:
[tex]\[ (0.002)^2 = 4 \times 10^{-6} \][/tex]
5. Substitute these values into the formula:
[tex]\[ F = 8.99 \times 10^9 \cdot \frac{18 \times 10^{-12}}{4 \times 10^{-6}} \][/tex]
6. Simplify the fraction:
[tex]\[ \frac{18 \times 10^{-12}}{4 \times 10^{-6}} = 4.5 \times 10^{-6} \][/tex]
7. Calculate the final force magnitude:
[tex]\[ F = 8.99 \times 10^9 \cdot 4.5 \times 10^{-6} = 40455 \, \text{N} \][/tex]
The magnitude of the force is approximately [tex]\( 40455 \, \text{N} \)[/tex].
To determine the direction:
- [tex]\( q_1 \)[/tex] is negative.
- [tex]\( q_2 \)[/tex] is positive.
- Since opposite charges attract, the force on [tex]\( q_2 \)[/tex] due to [tex]\( q_1 \)[/tex] will be towards [tex]\( q_1 \)[/tex]. Since [tex]\( q_1 \)[/tex] is north of [tex]\( q_2 \)[/tex], the force on [tex]\( q_2 \)[/tex] will be directed south.
Therefore, the correct answer is:
- Magnitude: [tex]\( 4 \times 10^4 \, \text{N} \)[/tex]
- Direction: South
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.