Answered

Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

A negative charge, [tex]\( q_1 \)[/tex], of [tex]\( 6 \mu C \)[/tex] is [tex]\( 0.002 m \)[/tex] north of a positive charge, [tex]\( q_2 \)[/tex], of [tex]\( 3 \mu C \)[/tex]. What is the magnitude and direction of the electrical force, [tex]\( F_e \)[/tex], applied by [tex]\( q_1 \)[/tex] on [tex]\( q_2 \)[/tex]?

A. Magnitude: [tex]\( 8 \times 10^1 N \)[/tex]; Direction: south
B. Magnitude: [tex]\( 8 \times 10^1 N \)[/tex]; Direction: north
C. Magnitude: [tex]\( 4 \times 10^4 N \)[/tex]; Direction: south
D. Magnitude: [tex]\( 4 \times 10^4 N \)[/tex]; Direction: north


Sagot :

To solve this problem, you need to apply Coulomb's law, which quantifies the electrostatic force between two point charges. Coulomb's law is given by the formula:

[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]

where:
- [tex]\( F \)[/tex] is the magnitude of the force between the charges,
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \)[/tex],
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.

Let's plug in the given values.

1. Convert the charges from microcoulombs (μC) to coulombs (C):
- [tex]\( q_1 = -6 \, \mu C = -6 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( q_2 = 3 \, \mu C = 3 \times 10^{-6} \, \text{C} \)[/tex]

2. Substitute the known values into Coulomb's law:
- [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \)[/tex]
- [tex]\( r = 0.002 \, \text{m} \)[/tex]

[tex]\[ F = 8.99 \times 10^9 \cdot \frac{|-6 \times 10^{-6} \cdot 3 \times 10^{-6}|}{(0.002)^2} \][/tex]

3. Calculate the product of the charges:
[tex]\[ |-6 \times 10^{-6} \cdot 3 \times 10^{-6}| = 18 \times 10^{-12} \][/tex]

4. Calculate the distance squared:
[tex]\[ (0.002)^2 = 4 \times 10^{-6} \][/tex]

5. Substitute these values into the formula:
[tex]\[ F = 8.99 \times 10^9 \cdot \frac{18 \times 10^{-12}}{4 \times 10^{-6}} \][/tex]

6. Simplify the fraction:
[tex]\[ \frac{18 \times 10^{-12}}{4 \times 10^{-6}} = 4.5 \times 10^{-6} \][/tex]

7. Calculate the final force magnitude:
[tex]\[ F = 8.99 \times 10^9 \cdot 4.5 \times 10^{-6} = 40455 \, \text{N} \][/tex]

The magnitude of the force is approximately [tex]\( 40455 \, \text{N} \)[/tex].

To determine the direction:
- [tex]\( q_1 \)[/tex] is negative.
- [tex]\( q_2 \)[/tex] is positive.
- Since opposite charges attract, the force on [tex]\( q_2 \)[/tex] due to [tex]\( q_1 \)[/tex] will be towards [tex]\( q_1 \)[/tex]. Since [tex]\( q_1 \)[/tex] is north of [tex]\( q_2 \)[/tex], the force on [tex]\( q_2 \)[/tex] will be directed south.

Therefore, the correct answer is:

- Magnitude: [tex]\( 4 \times 10^4 \, \text{N} \)[/tex]
- Direction: South
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.