At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To write the quadratic function [tex]\( f(x) = 7x^2 + 42x \)[/tex] in vertex form, we need to follow a process called completing the square. Here is a step-by-step solution:
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the terms involving [tex]\( x \)[/tex]:
[tex]\[ f(x) = 7(x^2 + 6x) \][/tex]
2. Complete the square inside the parentheses:
- We look at the quadratic expression inside the parentheses: [tex]\( x^2 + 6x \)[/tex].
- To complete the square, we need to add and subtract a constant. This constant is found by taking half the coefficient of [tex]\( x \)[/tex] (which is 6 in this case), squaring it:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
- Add and subtract this constant inside the parentheses:
[tex]\[ x^2 + 6x = (x^2 + 6x + 9 - 9) = (x + 3)^2 - 9 \][/tex]
3. Rewrite the quadratic function with this completed square:
[tex]\[ f(x) = 7[(x + 3)^2 - 9] \][/tex]
4. Distribute the [tex]\( 7 \)[/tex] back into the equation:
[tex]\[ f(x) = 7(x + 3)^2 - 7 \cdot 9 \][/tex]
Simplify the constant term:
[tex]\[ 7 \cdot 9 = 63 \][/tex]
So,
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
Thus, the function [tex]\( f(x) \)[/tex] written in vertex form is:
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
The correct answer is:
[tex]\[ \boxed{7(x+3)^2-63} \][/tex]
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the terms involving [tex]\( x \)[/tex]:
[tex]\[ f(x) = 7(x^2 + 6x) \][/tex]
2. Complete the square inside the parentheses:
- We look at the quadratic expression inside the parentheses: [tex]\( x^2 + 6x \)[/tex].
- To complete the square, we need to add and subtract a constant. This constant is found by taking half the coefficient of [tex]\( x \)[/tex] (which is 6 in this case), squaring it:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
- Add and subtract this constant inside the parentheses:
[tex]\[ x^2 + 6x = (x^2 + 6x + 9 - 9) = (x + 3)^2 - 9 \][/tex]
3. Rewrite the quadratic function with this completed square:
[tex]\[ f(x) = 7[(x + 3)^2 - 9] \][/tex]
4. Distribute the [tex]\( 7 \)[/tex] back into the equation:
[tex]\[ f(x) = 7(x + 3)^2 - 7 \cdot 9 \][/tex]
Simplify the constant term:
[tex]\[ 7 \cdot 9 = 63 \][/tex]
So,
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
Thus, the function [tex]\( f(x) \)[/tex] written in vertex form is:
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
The correct answer is:
[tex]\[ \boxed{7(x+3)^2-63} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.