Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To write the quadratic function [tex]\( f(x) = 7x^2 + 42x \)[/tex] in vertex form, we need to follow a process called completing the square. Here is a step-by-step solution:
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the terms involving [tex]\( x \)[/tex]:
[tex]\[ f(x) = 7(x^2 + 6x) \][/tex]
2. Complete the square inside the parentheses:
- We look at the quadratic expression inside the parentheses: [tex]\( x^2 + 6x \)[/tex].
- To complete the square, we need to add and subtract a constant. This constant is found by taking half the coefficient of [tex]\( x \)[/tex] (which is 6 in this case), squaring it:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
- Add and subtract this constant inside the parentheses:
[tex]\[ x^2 + 6x = (x^2 + 6x + 9 - 9) = (x + 3)^2 - 9 \][/tex]
3. Rewrite the quadratic function with this completed square:
[tex]\[ f(x) = 7[(x + 3)^2 - 9] \][/tex]
4. Distribute the [tex]\( 7 \)[/tex] back into the equation:
[tex]\[ f(x) = 7(x + 3)^2 - 7 \cdot 9 \][/tex]
Simplify the constant term:
[tex]\[ 7 \cdot 9 = 63 \][/tex]
So,
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
Thus, the function [tex]\( f(x) \)[/tex] written in vertex form is:
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
The correct answer is:
[tex]\[ \boxed{7(x+3)^2-63} \][/tex]
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the terms involving [tex]\( x \)[/tex]:
[tex]\[ f(x) = 7(x^2 + 6x) \][/tex]
2. Complete the square inside the parentheses:
- We look at the quadratic expression inside the parentheses: [tex]\( x^2 + 6x \)[/tex].
- To complete the square, we need to add and subtract a constant. This constant is found by taking half the coefficient of [tex]\( x \)[/tex] (which is 6 in this case), squaring it:
[tex]\[ \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
- Add and subtract this constant inside the parentheses:
[tex]\[ x^2 + 6x = (x^2 + 6x + 9 - 9) = (x + 3)^2 - 9 \][/tex]
3. Rewrite the quadratic function with this completed square:
[tex]\[ f(x) = 7[(x + 3)^2 - 9] \][/tex]
4. Distribute the [tex]\( 7 \)[/tex] back into the equation:
[tex]\[ f(x) = 7(x + 3)^2 - 7 \cdot 9 \][/tex]
Simplify the constant term:
[tex]\[ 7 \cdot 9 = 63 \][/tex]
So,
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
Thus, the function [tex]\( f(x) \)[/tex] written in vertex form is:
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
The correct answer is:
[tex]\[ \boxed{7(x+3)^2-63} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.