Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

What is [tex]\( f(x) = 7x^2 + 42x \)[/tex] written in vertex form?

A. [tex]\( f(x) = 7(x+6)^2 - 6 \)[/tex]
B. [tex]\( f(x) = 7(x+6)^2 - 42 \)[/tex]
C. [tex]\( f(x) = 7(x+3)^2 - 9 \)[/tex]
D. [tex]\( f(x) = 7(x+3)^2 - 63 \)[/tex]


Sagot :

To express the quadratic function [tex]\( f(x) = 7x^2 + 42x \)[/tex] in vertex form, we proceed through a method called "completing the square." The vertex form of a quadratic function is given by [tex]\( f(x) = a(x-h)^2 + k \)[/tex], where [tex]\((h, k)\)[/tex] is the vertex of the parabola.

Here are the steps:

1. Factor out the coefficient of [tex]\( x^2 \)[/tex] (which is 7) from the first two terms:
[tex]\[ f(x) = 7(x^2 + 6x) \][/tex]

2. Complete the square inside the parentheses:
To complete the square, take half of the coefficient of [tex]\( x \)[/tex] (which is 6), square it, and then add and subtract this square inside the parentheses.
[tex]\[ \left(\frac{6}{2}\right)^2 = 9 \][/tex]
So, we add and subtract 9 inside the parentheses:
[tex]\[ f(x) = 7(x^2 + 6x + 9 - 9) \][/tex]

3. Rewrite the equation by factoring the perfect square trinomial and then distribute the 7 through the remaining term:
[tex]\[ f(x) = 7[(x^2 + 6x + 9) - 9] \][/tex]
[tex]\[ f(x) = 7[(x + 3)^2 - 9] \][/tex]

4. Distribute the 7 to get the final form:
[tex]\[ f(x) = 7(x + 3)^2 - 7 \cdot 9 \][/tex]
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]

Therefore, the function [tex]\( f(x) = 7x^2 + 42x \)[/tex] written in vertex form is:
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]

The correct option is:
[tex]\[ f(x) = 7(x + 3)^2 - 63 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.