Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's break down the given expression and compare it with all the provided options step by step.
### Given Expression:
[tex]\[ \log_3 3 + \log_3 27 \][/tex]
### Step-by-Step Analysis:
1. Simplify the Expression:
- Recall that the logarithmic identity [tex]\(\log_a(a) = 1\)[/tex].
[tex]\[ \log_3 3 = 1 \][/tex]
- Next, use the properties of logarithms. Remember that [tex]\(\log_b(mn) = \log_b(m) + \log_b(n) \)[/tex].
[tex]\[ \log_3 27 = \log_3 (3^3) \][/tex]
Using the power rule for logarithms [tex]\(\log_b(m^n) = n \log_b(m)\)[/tex]:
[tex]\[ \log_3 (3^3) = 3 \log_3 3 = 3 \cdot 1 = 3 \][/tex]
- Add the two simplified parts:
[tex]\[ \log_3 3 + \log_3 27 = 1 + 3 = 4 \][/tex]
### Comparison with Options:
Let's now evaluate each provided option.
Option A: [tex]\(\log_3 81\)[/tex]
[tex]\[ \log_3 81 = \log_3 (3^4) \][/tex]
Using the power rule:
[tex]\[ \log_3 (3^4) = 4 \log_3 3 = 4 \cdot 1 = 4 \][/tex]
Since [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex] and [tex]\(\log_3 81 = 4\)[/tex], they are equivalent.
Option B: [tex]\(\log_3(3^4)\)[/tex]
[tex]\[ \log_3(3^4) = 4 \log_3 3 = 4 \cdot 1 = 4 \][/tex]
Since [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex] and [tex]\(\log_3(3^4) = 4\)[/tex], they are equivalent.
Option C: 4
We already found that [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex]. So, this option is indeed equivalent.
Option D: [tex]\(\log 10\)[/tex]
[tex]\(\log 10\)[/tex] is the logarithm to base 10, commonly denoted [tex]\( \log_{10} 10 \)[/tex]. This simplifies to:
[tex]\[ \log_{10} 10 = 1 \][/tex]
Since [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex] and [tex]\(\log 10 = 1\)[/tex], they are not equivalent.
### Conclusion:
Based on the analysis, the expressions equivalent to [tex]\(\log_3 3 + \log_3 27\)[/tex] are:
- A. [tex]\(\log_3 81\)[/tex]
- B. [tex]\(\log_3(3^4)\)[/tex]
- C. 4
Thus, the checked answers for the question are:
- A. [tex]\(\log_3 81\)[/tex]
- B. [tex]\(\log_3 (3^4)\)[/tex]
- C. 4
### Given Expression:
[tex]\[ \log_3 3 + \log_3 27 \][/tex]
### Step-by-Step Analysis:
1. Simplify the Expression:
- Recall that the logarithmic identity [tex]\(\log_a(a) = 1\)[/tex].
[tex]\[ \log_3 3 = 1 \][/tex]
- Next, use the properties of logarithms. Remember that [tex]\(\log_b(mn) = \log_b(m) + \log_b(n) \)[/tex].
[tex]\[ \log_3 27 = \log_3 (3^3) \][/tex]
Using the power rule for logarithms [tex]\(\log_b(m^n) = n \log_b(m)\)[/tex]:
[tex]\[ \log_3 (3^3) = 3 \log_3 3 = 3 \cdot 1 = 3 \][/tex]
- Add the two simplified parts:
[tex]\[ \log_3 3 + \log_3 27 = 1 + 3 = 4 \][/tex]
### Comparison with Options:
Let's now evaluate each provided option.
Option A: [tex]\(\log_3 81\)[/tex]
[tex]\[ \log_3 81 = \log_3 (3^4) \][/tex]
Using the power rule:
[tex]\[ \log_3 (3^4) = 4 \log_3 3 = 4 \cdot 1 = 4 \][/tex]
Since [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex] and [tex]\(\log_3 81 = 4\)[/tex], they are equivalent.
Option B: [tex]\(\log_3(3^4)\)[/tex]
[tex]\[ \log_3(3^4) = 4 \log_3 3 = 4 \cdot 1 = 4 \][/tex]
Since [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex] and [tex]\(\log_3(3^4) = 4\)[/tex], they are equivalent.
Option C: 4
We already found that [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex]. So, this option is indeed equivalent.
Option D: [tex]\(\log 10\)[/tex]
[tex]\(\log 10\)[/tex] is the logarithm to base 10, commonly denoted [tex]\( \log_{10} 10 \)[/tex]. This simplifies to:
[tex]\[ \log_{10} 10 = 1 \][/tex]
Since [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex] and [tex]\(\log 10 = 1\)[/tex], they are not equivalent.
### Conclusion:
Based on the analysis, the expressions equivalent to [tex]\(\log_3 3 + \log_3 27\)[/tex] are:
- A. [tex]\(\log_3 81\)[/tex]
- B. [tex]\(\log_3(3^4)\)[/tex]
- C. 4
Thus, the checked answers for the question are:
- A. [tex]\(\log_3 81\)[/tex]
- B. [tex]\(\log_3 (3^4)\)[/tex]
- C. 4
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.