Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's break down the given expression and compare it with all the provided options step by step.
### Given Expression:
[tex]\[ \log_3 3 + \log_3 27 \][/tex]
### Step-by-Step Analysis:
1. Simplify the Expression:
- Recall that the logarithmic identity [tex]\(\log_a(a) = 1\)[/tex].
[tex]\[ \log_3 3 = 1 \][/tex]
- Next, use the properties of logarithms. Remember that [tex]\(\log_b(mn) = \log_b(m) + \log_b(n) \)[/tex].
[tex]\[ \log_3 27 = \log_3 (3^3) \][/tex]
Using the power rule for logarithms [tex]\(\log_b(m^n) = n \log_b(m)\)[/tex]:
[tex]\[ \log_3 (3^3) = 3 \log_3 3 = 3 \cdot 1 = 3 \][/tex]
- Add the two simplified parts:
[tex]\[ \log_3 3 + \log_3 27 = 1 + 3 = 4 \][/tex]
### Comparison with Options:
Let's now evaluate each provided option.
Option A: [tex]\(\log_3 81\)[/tex]
[tex]\[ \log_3 81 = \log_3 (3^4) \][/tex]
Using the power rule:
[tex]\[ \log_3 (3^4) = 4 \log_3 3 = 4 \cdot 1 = 4 \][/tex]
Since [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex] and [tex]\(\log_3 81 = 4\)[/tex], they are equivalent.
Option B: [tex]\(\log_3(3^4)\)[/tex]
[tex]\[ \log_3(3^4) = 4 \log_3 3 = 4 \cdot 1 = 4 \][/tex]
Since [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex] and [tex]\(\log_3(3^4) = 4\)[/tex], they are equivalent.
Option C: 4
We already found that [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex]. So, this option is indeed equivalent.
Option D: [tex]\(\log 10\)[/tex]
[tex]\(\log 10\)[/tex] is the logarithm to base 10, commonly denoted [tex]\( \log_{10} 10 \)[/tex]. This simplifies to:
[tex]\[ \log_{10} 10 = 1 \][/tex]
Since [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex] and [tex]\(\log 10 = 1\)[/tex], they are not equivalent.
### Conclusion:
Based on the analysis, the expressions equivalent to [tex]\(\log_3 3 + \log_3 27\)[/tex] are:
- A. [tex]\(\log_3 81\)[/tex]
- B. [tex]\(\log_3(3^4)\)[/tex]
- C. 4
Thus, the checked answers for the question are:
- A. [tex]\(\log_3 81\)[/tex]
- B. [tex]\(\log_3 (3^4)\)[/tex]
- C. 4
### Given Expression:
[tex]\[ \log_3 3 + \log_3 27 \][/tex]
### Step-by-Step Analysis:
1. Simplify the Expression:
- Recall that the logarithmic identity [tex]\(\log_a(a) = 1\)[/tex].
[tex]\[ \log_3 3 = 1 \][/tex]
- Next, use the properties of logarithms. Remember that [tex]\(\log_b(mn) = \log_b(m) + \log_b(n) \)[/tex].
[tex]\[ \log_3 27 = \log_3 (3^3) \][/tex]
Using the power rule for logarithms [tex]\(\log_b(m^n) = n \log_b(m)\)[/tex]:
[tex]\[ \log_3 (3^3) = 3 \log_3 3 = 3 \cdot 1 = 3 \][/tex]
- Add the two simplified parts:
[tex]\[ \log_3 3 + \log_3 27 = 1 + 3 = 4 \][/tex]
### Comparison with Options:
Let's now evaluate each provided option.
Option A: [tex]\(\log_3 81\)[/tex]
[tex]\[ \log_3 81 = \log_3 (3^4) \][/tex]
Using the power rule:
[tex]\[ \log_3 (3^4) = 4 \log_3 3 = 4 \cdot 1 = 4 \][/tex]
Since [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex] and [tex]\(\log_3 81 = 4\)[/tex], they are equivalent.
Option B: [tex]\(\log_3(3^4)\)[/tex]
[tex]\[ \log_3(3^4) = 4 \log_3 3 = 4 \cdot 1 = 4 \][/tex]
Since [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex] and [tex]\(\log_3(3^4) = 4\)[/tex], they are equivalent.
Option C: 4
We already found that [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex]. So, this option is indeed equivalent.
Option D: [tex]\(\log 10\)[/tex]
[tex]\(\log 10\)[/tex] is the logarithm to base 10, commonly denoted [tex]\( \log_{10} 10 \)[/tex]. This simplifies to:
[tex]\[ \log_{10} 10 = 1 \][/tex]
Since [tex]\(\log_3 3 + \log_3 27 = 4\)[/tex] and [tex]\(\log 10 = 1\)[/tex], they are not equivalent.
### Conclusion:
Based on the analysis, the expressions equivalent to [tex]\(\log_3 3 + \log_3 27\)[/tex] are:
- A. [tex]\(\log_3 81\)[/tex]
- B. [tex]\(\log_3(3^4)\)[/tex]
- C. 4
Thus, the checked answers for the question are:
- A. [tex]\(\log_3 81\)[/tex]
- B. [tex]\(\log_3 (3^4)\)[/tex]
- C. 4
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.