Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the length of the longer leg [tex]\( f \)[/tex] of a right triangle where the hypotenuse [tex]\( h \)[/tex] is three times the length of the shorter leg [tex]\( x \)[/tex], we can follow these steps:
1. Establish the relationship between the hypotenuse and the shorter leg:
Since the hypotenuse [tex]\( h \)[/tex] is three times the shorter leg, we have:
[tex]\[ h = 3x \][/tex]
This implies that the shorter leg [tex]\( x \)[/tex] can be expressed as:
[tex]\[ x = \frac{h}{3} \][/tex]
2. Use the Pythagorean theorem:
According to the Pythagorean theorem for a right triangle, the square of the hypotenuse [tex]\( h \)[/tex] is equal to the sum of the squares of the legs:
[tex]\[ h^2 = x^2 + f^2 \][/tex]
3. Substitute [tex]\( x \)[/tex] in terms of [tex]\( h \)[/tex] into the equation:
Substituting [tex]\( x = \frac{h}{3} \)[/tex] into the Pythagorean theorem equation, we get:
[tex]\[ h^2 = \left( \frac{h}{3} \right)^2 + f^2 \][/tex]
4. Simplify the equation:
[tex]\[ h^2 = \frac{h^2}{9} + f^2 \][/tex]
5. Solve for [tex]\( f^2 \)[/tex]:
To isolate [tex]\( f^2 \)[/tex], subtract [tex]\(\frac{h^2}{9}\)[/tex] from both sides of the equation:
[tex]\[ h^2 - \frac{h^2}{9} = f^2 \][/tex]
6. Simplify the left-hand side:
[tex]\[ h^2 - \frac{h^2}{9} = \frac{9h^2}{9} - \frac{h^2}{9} = \frac{8h^2}{9} \][/tex]
7. Therefore, [tex]\( f^2 \)[/tex]:
[tex]\[ f^2 = \frac{8h^2}{9} \][/tex]
8. Take the square root of both sides to solve for [tex]\( f \)[/tex]:
[tex]\[ f = \sqrt{\frac{8h^2}{9}} = \frac{\sqrt{8h^2}}{3} = \frac{2\sqrt{2}h}{3} \][/tex]
So, the length of the longer leg [tex]\( f \)[/tex] in terms of [tex]\( h \)[/tex] is:
[tex]\[ f = \frac{2\sqrt{2}h}{3} \][/tex]
So, the correct values for [tex]\( a, b \)[/tex], and [tex]\( c \)[/tex] are:
[tex]\[ \boxed{2\sqrt{2}, 2, 3} \][/tex]
1. Establish the relationship between the hypotenuse and the shorter leg:
Since the hypotenuse [tex]\( h \)[/tex] is three times the shorter leg, we have:
[tex]\[ h = 3x \][/tex]
This implies that the shorter leg [tex]\( x \)[/tex] can be expressed as:
[tex]\[ x = \frac{h}{3} \][/tex]
2. Use the Pythagorean theorem:
According to the Pythagorean theorem for a right triangle, the square of the hypotenuse [tex]\( h \)[/tex] is equal to the sum of the squares of the legs:
[tex]\[ h^2 = x^2 + f^2 \][/tex]
3. Substitute [tex]\( x \)[/tex] in terms of [tex]\( h \)[/tex] into the equation:
Substituting [tex]\( x = \frac{h}{3} \)[/tex] into the Pythagorean theorem equation, we get:
[tex]\[ h^2 = \left( \frac{h}{3} \right)^2 + f^2 \][/tex]
4. Simplify the equation:
[tex]\[ h^2 = \frac{h^2}{9} + f^2 \][/tex]
5. Solve for [tex]\( f^2 \)[/tex]:
To isolate [tex]\( f^2 \)[/tex], subtract [tex]\(\frac{h^2}{9}\)[/tex] from both sides of the equation:
[tex]\[ h^2 - \frac{h^2}{9} = f^2 \][/tex]
6. Simplify the left-hand side:
[tex]\[ h^2 - \frac{h^2}{9} = \frac{9h^2}{9} - \frac{h^2}{9} = \frac{8h^2}{9} \][/tex]
7. Therefore, [tex]\( f^2 \)[/tex]:
[tex]\[ f^2 = \frac{8h^2}{9} \][/tex]
8. Take the square root of both sides to solve for [tex]\( f \)[/tex]:
[tex]\[ f = \sqrt{\frac{8h^2}{9}} = \frac{\sqrt{8h^2}}{3} = \frac{2\sqrt{2}h}{3} \][/tex]
So, the length of the longer leg [tex]\( f \)[/tex] in terms of [tex]\( h \)[/tex] is:
[tex]\[ f = \frac{2\sqrt{2}h}{3} \][/tex]
So, the correct values for [tex]\( a, b \)[/tex], and [tex]\( c \)[/tex] are:
[tex]\[ \boxed{2\sqrt{2}, 2, 3} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.