At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the length of the longer leg [tex]\( f \)[/tex] of a right triangle where the hypotenuse [tex]\( h \)[/tex] is three times the length of the shorter leg [tex]\( x \)[/tex], we can follow these steps:
1. Establish the relationship between the hypotenuse and the shorter leg:
Since the hypotenuse [tex]\( h \)[/tex] is three times the shorter leg, we have:
[tex]\[ h = 3x \][/tex]
This implies that the shorter leg [tex]\( x \)[/tex] can be expressed as:
[tex]\[ x = \frac{h}{3} \][/tex]
2. Use the Pythagorean theorem:
According to the Pythagorean theorem for a right triangle, the square of the hypotenuse [tex]\( h \)[/tex] is equal to the sum of the squares of the legs:
[tex]\[ h^2 = x^2 + f^2 \][/tex]
3. Substitute [tex]\( x \)[/tex] in terms of [tex]\( h \)[/tex] into the equation:
Substituting [tex]\( x = \frac{h}{3} \)[/tex] into the Pythagorean theorem equation, we get:
[tex]\[ h^2 = \left( \frac{h}{3} \right)^2 + f^2 \][/tex]
4. Simplify the equation:
[tex]\[ h^2 = \frac{h^2}{9} + f^2 \][/tex]
5. Solve for [tex]\( f^2 \)[/tex]:
To isolate [tex]\( f^2 \)[/tex], subtract [tex]\(\frac{h^2}{9}\)[/tex] from both sides of the equation:
[tex]\[ h^2 - \frac{h^2}{9} = f^2 \][/tex]
6. Simplify the left-hand side:
[tex]\[ h^2 - \frac{h^2}{9} = \frac{9h^2}{9} - \frac{h^2}{9} = \frac{8h^2}{9} \][/tex]
7. Therefore, [tex]\( f^2 \)[/tex]:
[tex]\[ f^2 = \frac{8h^2}{9} \][/tex]
8. Take the square root of both sides to solve for [tex]\( f \)[/tex]:
[tex]\[ f = \sqrt{\frac{8h^2}{9}} = \frac{\sqrt{8h^2}}{3} = \frac{2\sqrt{2}h}{3} \][/tex]
So, the length of the longer leg [tex]\( f \)[/tex] in terms of [tex]\( h \)[/tex] is:
[tex]\[ f = \frac{2\sqrt{2}h}{3} \][/tex]
So, the correct values for [tex]\( a, b \)[/tex], and [tex]\( c \)[/tex] are:
[tex]\[ \boxed{2\sqrt{2}, 2, 3} \][/tex]
1. Establish the relationship between the hypotenuse and the shorter leg:
Since the hypotenuse [tex]\( h \)[/tex] is three times the shorter leg, we have:
[tex]\[ h = 3x \][/tex]
This implies that the shorter leg [tex]\( x \)[/tex] can be expressed as:
[tex]\[ x = \frac{h}{3} \][/tex]
2. Use the Pythagorean theorem:
According to the Pythagorean theorem for a right triangle, the square of the hypotenuse [tex]\( h \)[/tex] is equal to the sum of the squares of the legs:
[tex]\[ h^2 = x^2 + f^2 \][/tex]
3. Substitute [tex]\( x \)[/tex] in terms of [tex]\( h \)[/tex] into the equation:
Substituting [tex]\( x = \frac{h}{3} \)[/tex] into the Pythagorean theorem equation, we get:
[tex]\[ h^2 = \left( \frac{h}{3} \right)^2 + f^2 \][/tex]
4. Simplify the equation:
[tex]\[ h^2 = \frac{h^2}{9} + f^2 \][/tex]
5. Solve for [tex]\( f^2 \)[/tex]:
To isolate [tex]\( f^2 \)[/tex], subtract [tex]\(\frac{h^2}{9}\)[/tex] from both sides of the equation:
[tex]\[ h^2 - \frac{h^2}{9} = f^2 \][/tex]
6. Simplify the left-hand side:
[tex]\[ h^2 - \frac{h^2}{9} = \frac{9h^2}{9} - \frac{h^2}{9} = \frac{8h^2}{9} \][/tex]
7. Therefore, [tex]\( f^2 \)[/tex]:
[tex]\[ f^2 = \frac{8h^2}{9} \][/tex]
8. Take the square root of both sides to solve for [tex]\( f \)[/tex]:
[tex]\[ f = \sqrt{\frac{8h^2}{9}} = \frac{\sqrt{8h^2}}{3} = \frac{2\sqrt{2}h}{3} \][/tex]
So, the length of the longer leg [tex]\( f \)[/tex] in terms of [tex]\( h \)[/tex] is:
[tex]\[ f = \frac{2\sqrt{2}h}{3} \][/tex]
So, the correct values for [tex]\( a, b \)[/tex], and [tex]\( c \)[/tex] are:
[tex]\[ \boxed{2\sqrt{2}, 2, 3} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.