Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the given division problem [tex]\(\frac{{x^2 + x}}{{2x + 2}}\)[/tex], we can follow these steps:
1. Simplify the denominator: Notice that the denominator [tex]\(2x + 2\)[/tex] can be factored as [tex]\(2(x + 1)\)[/tex].
2. Rewrite the expression: Now, we can rewrite the division as:
[tex]\[ \frac{{x^2 + x}}{{2(x + 1)}} \][/tex]
3. Perform polynomial long division:
- Divide the leading term of the numerator [tex]\(x^2\)[/tex] by the leading term of the denominator [tex]\(2x\)[/tex]. This gives us [tex]\(\frac{x^2}{2x} = \frac{x}{2}\)[/tex].
- Multiply [tex]\(\frac{x}{2}\)[/tex] by the entire denominator [tex]\(2(x + 1)\)[/tex], which results in [tex]\(\frac{x}{2} \cdot 2(x + 1) = x(x + 1) = x^2 + x\)[/tex].
- Subtract this result from the original numerator:
[tex]\[ (x^2 + x) - (x^2 + x) = 0 \][/tex]
4. Quotient and remainder: The quotient from the division is [tex]\(\frac{x}{2}\)[/tex] and the remainder is [tex]\(0\)[/tex].
Therefore, the quotient of the division problem [tex]\(\frac{x^2 + x}{2x + 2}\)[/tex] is [tex]\(\boxed{\frac{x}{2}}\)[/tex].
1. Simplify the denominator: Notice that the denominator [tex]\(2x + 2\)[/tex] can be factored as [tex]\(2(x + 1)\)[/tex].
2. Rewrite the expression: Now, we can rewrite the division as:
[tex]\[ \frac{{x^2 + x}}{{2(x + 1)}} \][/tex]
3. Perform polynomial long division:
- Divide the leading term of the numerator [tex]\(x^2\)[/tex] by the leading term of the denominator [tex]\(2x\)[/tex]. This gives us [tex]\(\frac{x^2}{2x} = \frac{x}{2}\)[/tex].
- Multiply [tex]\(\frac{x}{2}\)[/tex] by the entire denominator [tex]\(2(x + 1)\)[/tex], which results in [tex]\(\frac{x}{2} \cdot 2(x + 1) = x(x + 1) = x^2 + x\)[/tex].
- Subtract this result from the original numerator:
[tex]\[ (x^2 + x) - (x^2 + x) = 0 \][/tex]
4. Quotient and remainder: The quotient from the division is [tex]\(\frac{x}{2}\)[/tex] and the remainder is [tex]\(0\)[/tex].
Therefore, the quotient of the division problem [tex]\(\frac{x^2 + x}{2x + 2}\)[/tex] is [tex]\(\boxed{\frac{x}{2}}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.