Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the given division problem [tex]\(\frac{{x^2 + x}}{{2x + 2}}\)[/tex], we can follow these steps:
1. Simplify the denominator: Notice that the denominator [tex]\(2x + 2\)[/tex] can be factored as [tex]\(2(x + 1)\)[/tex].
2. Rewrite the expression: Now, we can rewrite the division as:
[tex]\[ \frac{{x^2 + x}}{{2(x + 1)}} \][/tex]
3. Perform polynomial long division:
- Divide the leading term of the numerator [tex]\(x^2\)[/tex] by the leading term of the denominator [tex]\(2x\)[/tex]. This gives us [tex]\(\frac{x^2}{2x} = \frac{x}{2}\)[/tex].
- Multiply [tex]\(\frac{x}{2}\)[/tex] by the entire denominator [tex]\(2(x + 1)\)[/tex], which results in [tex]\(\frac{x}{2} \cdot 2(x + 1) = x(x + 1) = x^2 + x\)[/tex].
- Subtract this result from the original numerator:
[tex]\[ (x^2 + x) - (x^2 + x) = 0 \][/tex]
4. Quotient and remainder: The quotient from the division is [tex]\(\frac{x}{2}\)[/tex] and the remainder is [tex]\(0\)[/tex].
Therefore, the quotient of the division problem [tex]\(\frac{x^2 + x}{2x + 2}\)[/tex] is [tex]\(\boxed{\frac{x}{2}}\)[/tex].
1. Simplify the denominator: Notice that the denominator [tex]\(2x + 2\)[/tex] can be factored as [tex]\(2(x + 1)\)[/tex].
2. Rewrite the expression: Now, we can rewrite the division as:
[tex]\[ \frac{{x^2 + x}}{{2(x + 1)}} \][/tex]
3. Perform polynomial long division:
- Divide the leading term of the numerator [tex]\(x^2\)[/tex] by the leading term of the denominator [tex]\(2x\)[/tex]. This gives us [tex]\(\frac{x^2}{2x} = \frac{x}{2}\)[/tex].
- Multiply [tex]\(\frac{x}{2}\)[/tex] by the entire denominator [tex]\(2(x + 1)\)[/tex], which results in [tex]\(\frac{x}{2} \cdot 2(x + 1) = x(x + 1) = x^2 + x\)[/tex].
- Subtract this result from the original numerator:
[tex]\[ (x^2 + x) - (x^2 + x) = 0 \][/tex]
4. Quotient and remainder: The quotient from the division is [tex]\(\frac{x}{2}\)[/tex] and the remainder is [tex]\(0\)[/tex].
Therefore, the quotient of the division problem [tex]\(\frac{x^2 + x}{2x + 2}\)[/tex] is [tex]\(\boxed{\frac{x}{2}}\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.