Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let’s work through the problem step by step.
1. Understanding Directions and Angles:
- The cruise ship leaves its port at a heading of [tex]\(135^\circ\)[/tex].
- Then it travels for 400 miles and changes its heading to [tex]\(180^\circ\)[/tex].
- Finally, it travels for another 250 miles to reach the island.
2. Angles Between Courses:
- Heading [tex]\(135^\circ\)[/tex] is measured from the north in the clockwise direction.
- Heading [tex]\(180^\circ\)[/tex] is due south.
Therefore, the turn made from [tex]\(135^\circ\)[/tex] to [tex]\(180^\circ\)[/tex] results in a change in direction.
To find the angle between the two legs of the journey, we calculate the difference:
[tex]\[ \text{Angle between directions} = 180^\circ - 135^\circ = 45^\circ \][/tex]
3. Using the Law of Cosines:
The Law of Cosines states:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cdot \cos(\theta) \][/tex]
where:
- [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are the sides (400 miles and 250 miles, respectively),
- [tex]\(\theta\)[/tex] is the angle between these sides (45 degrees or in radians, [tex]\(\frac{\pi}{4}\)[/tex]),
- [tex]\(c\)[/tex] is the distance from the port to the island.
4. Converting the Angle to Radians:
[tex]\[ 45^\circ = \frac{\pi}{4} \text{ radians} \][/tex]
5. Calculating the Distance [tex]\(c\)[/tex]:
Plugging the values into the Law of Cosines formula:
[tex]\[ c^2 = 400^2 + 250^2 - 2 \times 400 \times 250 \times \cos\left(\frac{\pi}{4}\right) \][/tex]
We know that [tex]\(\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}\)[/tex]:
[tex]\[ c^2 = 160000 + 62500 - 2 \times 400 \times 250 \times \frac{\sqrt{2}}{2} \][/tex]
Simplify the calculations:
[tex]\[ c^2 = 160000 + 62500 - 400 \times 250 \times \sqrt{2} \][/tex]
[tex]\[ c^2 = 160000 + 62500 - 100000 \sqrt{2} \][/tex]
6. Finding the Approximate Value:
Summing these together:
[tex]\[ c \approx 284.74 \text{ miles} \][/tex]
Therefore, the approximate distance between the port and the island is 284.74 miles.
1. Understanding Directions and Angles:
- The cruise ship leaves its port at a heading of [tex]\(135^\circ\)[/tex].
- Then it travels for 400 miles and changes its heading to [tex]\(180^\circ\)[/tex].
- Finally, it travels for another 250 miles to reach the island.
2. Angles Between Courses:
- Heading [tex]\(135^\circ\)[/tex] is measured from the north in the clockwise direction.
- Heading [tex]\(180^\circ\)[/tex] is due south.
Therefore, the turn made from [tex]\(135^\circ\)[/tex] to [tex]\(180^\circ\)[/tex] results in a change in direction.
To find the angle between the two legs of the journey, we calculate the difference:
[tex]\[ \text{Angle between directions} = 180^\circ - 135^\circ = 45^\circ \][/tex]
3. Using the Law of Cosines:
The Law of Cosines states:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cdot \cos(\theta) \][/tex]
where:
- [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are the sides (400 miles and 250 miles, respectively),
- [tex]\(\theta\)[/tex] is the angle between these sides (45 degrees or in radians, [tex]\(\frac{\pi}{4}\)[/tex]),
- [tex]\(c\)[/tex] is the distance from the port to the island.
4. Converting the Angle to Radians:
[tex]\[ 45^\circ = \frac{\pi}{4} \text{ radians} \][/tex]
5. Calculating the Distance [tex]\(c\)[/tex]:
Plugging the values into the Law of Cosines formula:
[tex]\[ c^2 = 400^2 + 250^2 - 2 \times 400 \times 250 \times \cos\left(\frac{\pi}{4}\right) \][/tex]
We know that [tex]\(\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}\)[/tex]:
[tex]\[ c^2 = 160000 + 62500 - 2 \times 400 \times 250 \times \frac{\sqrt{2}}{2} \][/tex]
Simplify the calculations:
[tex]\[ c^2 = 160000 + 62500 - 400 \times 250 \times \sqrt{2} \][/tex]
[tex]\[ c^2 = 160000 + 62500 - 100000 \sqrt{2} \][/tex]
6. Finding the Approximate Value:
Summing these together:
[tex]\[ c \approx 284.74 \text{ miles} \][/tex]
Therefore, the approximate distance between the port and the island is 284.74 miles.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.