Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let’s work through the problem step by step.
1. Understanding Directions and Angles:
- The cruise ship leaves its port at a heading of [tex]\(135^\circ\)[/tex].
- Then it travels for 400 miles and changes its heading to [tex]\(180^\circ\)[/tex].
- Finally, it travels for another 250 miles to reach the island.
2. Angles Between Courses:
- Heading [tex]\(135^\circ\)[/tex] is measured from the north in the clockwise direction.
- Heading [tex]\(180^\circ\)[/tex] is due south.
Therefore, the turn made from [tex]\(135^\circ\)[/tex] to [tex]\(180^\circ\)[/tex] results in a change in direction.
To find the angle between the two legs of the journey, we calculate the difference:
[tex]\[ \text{Angle between directions} = 180^\circ - 135^\circ = 45^\circ \][/tex]
3. Using the Law of Cosines:
The Law of Cosines states:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cdot \cos(\theta) \][/tex]
where:
- [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are the sides (400 miles and 250 miles, respectively),
- [tex]\(\theta\)[/tex] is the angle between these sides (45 degrees or in radians, [tex]\(\frac{\pi}{4}\)[/tex]),
- [tex]\(c\)[/tex] is the distance from the port to the island.
4. Converting the Angle to Radians:
[tex]\[ 45^\circ = \frac{\pi}{4} \text{ radians} \][/tex]
5. Calculating the Distance [tex]\(c\)[/tex]:
Plugging the values into the Law of Cosines formula:
[tex]\[ c^2 = 400^2 + 250^2 - 2 \times 400 \times 250 \times \cos\left(\frac{\pi}{4}\right) \][/tex]
We know that [tex]\(\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}\)[/tex]:
[tex]\[ c^2 = 160000 + 62500 - 2 \times 400 \times 250 \times \frac{\sqrt{2}}{2} \][/tex]
Simplify the calculations:
[tex]\[ c^2 = 160000 + 62500 - 400 \times 250 \times \sqrt{2} \][/tex]
[tex]\[ c^2 = 160000 + 62500 - 100000 \sqrt{2} \][/tex]
6. Finding the Approximate Value:
Summing these together:
[tex]\[ c \approx 284.74 \text{ miles} \][/tex]
Therefore, the approximate distance between the port and the island is 284.74 miles.
1. Understanding Directions and Angles:
- The cruise ship leaves its port at a heading of [tex]\(135^\circ\)[/tex].
- Then it travels for 400 miles and changes its heading to [tex]\(180^\circ\)[/tex].
- Finally, it travels for another 250 miles to reach the island.
2. Angles Between Courses:
- Heading [tex]\(135^\circ\)[/tex] is measured from the north in the clockwise direction.
- Heading [tex]\(180^\circ\)[/tex] is due south.
Therefore, the turn made from [tex]\(135^\circ\)[/tex] to [tex]\(180^\circ\)[/tex] results in a change in direction.
To find the angle between the two legs of the journey, we calculate the difference:
[tex]\[ \text{Angle between directions} = 180^\circ - 135^\circ = 45^\circ \][/tex]
3. Using the Law of Cosines:
The Law of Cosines states:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cdot \cos(\theta) \][/tex]
where:
- [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are the sides (400 miles and 250 miles, respectively),
- [tex]\(\theta\)[/tex] is the angle between these sides (45 degrees or in radians, [tex]\(\frac{\pi}{4}\)[/tex]),
- [tex]\(c\)[/tex] is the distance from the port to the island.
4. Converting the Angle to Radians:
[tex]\[ 45^\circ = \frac{\pi}{4} \text{ radians} \][/tex]
5. Calculating the Distance [tex]\(c\)[/tex]:
Plugging the values into the Law of Cosines formula:
[tex]\[ c^2 = 400^2 + 250^2 - 2 \times 400 \times 250 \times \cos\left(\frac{\pi}{4}\right) \][/tex]
We know that [tex]\(\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}\)[/tex]:
[tex]\[ c^2 = 160000 + 62500 - 2 \times 400 \times 250 \times \frac{\sqrt{2}}{2} \][/tex]
Simplify the calculations:
[tex]\[ c^2 = 160000 + 62500 - 400 \times 250 \times \sqrt{2} \][/tex]
[tex]\[ c^2 = 160000 + 62500 - 100000 \sqrt{2} \][/tex]
6. Finding the Approximate Value:
Summing these together:
[tex]\[ c \approx 284.74 \text{ miles} \][/tex]
Therefore, the approximate distance between the port and the island is 284.74 miles.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.