Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To draw the line representing the equation [tex]\( y = -\frac{2}{3} x + 1 \)[/tex] on a graph, follow these steps:
1. Identify the y-intercept:
The equation of the line is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
Here, the y-intercept [tex]\( b \)[/tex] is 1. This means the line crosses the y-axis at [tex]\( (0, 1) \)[/tex].
- Plot the point (0, 1) on the graph.
2. Determine another point using the slope:
The slope [tex]\( m \)[/tex] is [tex]\(-\frac{2}{3} \)[/tex], which means for every 3 units you move to the right on the x-axis, you move 2 units down on the y-axis.
Starting from the y-intercept (0, 1):
- Move 3 units to the right. This lands you at [tex]\( x = 3 \)[/tex].
- Move 2 units down. Since our starting y-coordinate was 1, moving 2 units down lands us at [tex]\( y = -1 \)[/tex].
- Plot the point (3, -1).
3. Draw the line:
Using a ruler or the line drawing tool available, draw a straight line through the points (0, 1) and (3, -1).
4. Extend the line:
Extend the line through both directions to cover the entire graph, ensuring it accurately represents the equation [tex]\( y = -\frac{2}{3} x + 1 \)[/tex].
Here's a quick reference to help visualize the points and line:
- Initial point at y-intercept (0, 1)
- Slope calculation to find second point (3, -1)
- Draw a straight line through these points and extend it across the graph.
By following these steps, you’ll correctly draw the line for the equation [tex]\( y = -\frac{2}{3} x + 1 \)[/tex].
1. Identify the y-intercept:
The equation of the line is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
Here, the y-intercept [tex]\( b \)[/tex] is 1. This means the line crosses the y-axis at [tex]\( (0, 1) \)[/tex].
- Plot the point (0, 1) on the graph.
2. Determine another point using the slope:
The slope [tex]\( m \)[/tex] is [tex]\(-\frac{2}{3} \)[/tex], which means for every 3 units you move to the right on the x-axis, you move 2 units down on the y-axis.
Starting from the y-intercept (0, 1):
- Move 3 units to the right. This lands you at [tex]\( x = 3 \)[/tex].
- Move 2 units down. Since our starting y-coordinate was 1, moving 2 units down lands us at [tex]\( y = -1 \)[/tex].
- Plot the point (3, -1).
3. Draw the line:
Using a ruler or the line drawing tool available, draw a straight line through the points (0, 1) and (3, -1).
4. Extend the line:
Extend the line through both directions to cover the entire graph, ensuring it accurately represents the equation [tex]\( y = -\frac{2}{3} x + 1 \)[/tex].
Here's a quick reference to help visualize the points and line:
- Initial point at y-intercept (0, 1)
- Slope calculation to find second point (3, -1)
- Draw a straight line through these points and extend it across the graph.
By following these steps, you’ll correctly draw the line for the equation [tex]\( y = -\frac{2}{3} x + 1 \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.