At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To simplify the given expression:
[tex]\[ \frac{(3m^2 n)^3}{m n^4} \][/tex]
we can follow these steps:
1. Simplify the numerator: Apply the power of a product property [tex]\((ab)^c = a^c b^c\)[/tex]:
[tex]\[ (3m^2 n)^3 = 3^3 (m^2)^3 n^3 = 27m^6 n^3 \][/tex]
So, the expression now looks like:
[tex]\[ \frac{27m^6 n^3}{m n^4} \][/tex]
2. Simplify the fraction by dividing the numerator by the denominator. This involves subtracting the exponents of like bases:
[tex]\[ \frac{27m^6 n^3}{m n^4} = 27 \frac{m^6}{m^1} \frac{n^3}{n^4} = 27 m^{6-1} n^{3-4} = 27 m^5 n^{-1} \][/tex]
3. Rewrite with positive exponents: [tex]\(n^{-1} = \frac{1}{n}\)[/tex], so we have:
[tex]\[ 27 m^5 n^{-1} = \frac{27m^5}{n} \][/tex]
Thus, the simplified expression is:
[tex]\[ \frac{27 m^5}{n} \][/tex]
Therefore, the equivalent expression corresponds to option B.
[tex]\[ \frac{(3m^2 n)^3}{m n^4} \][/tex]
we can follow these steps:
1. Simplify the numerator: Apply the power of a product property [tex]\((ab)^c = a^c b^c\)[/tex]:
[tex]\[ (3m^2 n)^3 = 3^3 (m^2)^3 n^3 = 27m^6 n^3 \][/tex]
So, the expression now looks like:
[tex]\[ \frac{27m^6 n^3}{m n^4} \][/tex]
2. Simplify the fraction by dividing the numerator by the denominator. This involves subtracting the exponents of like bases:
[tex]\[ \frac{27m^6 n^3}{m n^4} = 27 \frac{m^6}{m^1} \frac{n^3}{n^4} = 27 m^{6-1} n^{3-4} = 27 m^5 n^{-1} \][/tex]
3. Rewrite with positive exponents: [tex]\(n^{-1} = \frac{1}{n}\)[/tex], so we have:
[tex]\[ 27 m^5 n^{-1} = \frac{27m^5}{n} \][/tex]
Thus, the simplified expression is:
[tex]\[ \frac{27 m^5}{n} \][/tex]
Therefore, the equivalent expression corresponds to option B.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.