Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To factor the quadratic expression [tex]\( 3x^2 - 11x - 20 \)[/tex]:
1. Identify the coefficients: The given quadratic expression is in the form [tex]\( ax^2 + bx + c \)[/tex], where [tex]\( a = 3 \)[/tex], [tex]\( b = -11 \)[/tex], and [tex]\( c = -20 \)[/tex].
2. Find two numbers that multiply to [tex]\( ac \)[/tex]:
- Here, [tex]\( a \cdot c = 3 \cdot (-20) = -60 \)[/tex].
- We need to find two numbers that multiply to [tex]\(-60\)[/tex] and add up to [tex]\( b = -11 \)[/tex].
3. Determine these two numbers:
- The numbers that fit these conditions are [tex]\( -15 \)[/tex] and [tex]\( 4 \)[/tex].
- This is because [tex]\(-15 \times 4 = -60\)[/tex] and [tex]\(-15 + 4 = -11\)[/tex].
4. Rewrite the middle term:
- Express the quadratic expression by splitting the middle term:
[tex]\[ 3x^2 - 15x + 4x - 20 \][/tex]
5. Group the terms:
- Group the terms into two pairs:
[tex]\[ (3x^2 - 15x) + (4x - 20) \][/tex]
6. Factor out the greatest common factor (GCF) from each pair:
- From the first pair [tex]\(3x^2 - 15x\)[/tex], factor out [tex]\(3x\)[/tex]:
[tex]\[ 3x(x - 5) \][/tex]
- From the second pair [tex]\(4x - 20\)[/tex], factor out [tex]\(4\)[/tex]:
[tex]\[ 4(x - 5) \][/tex]
7. Combine the factored expressions:
- Now the expression looks like:
[tex]\[ 3x(x - 5) + 4(x - 5) \][/tex]
- Notice that [tex]\((x - 5)\)[/tex] is a common factor.
8. Factor out the common binomial [tex]\((x - 5)\)[/tex]:
- Combine the terms:
[tex]\[ (x - 5)(3x + 4) \][/tex]
Thus, the fully factored form of the quadratic expression [tex]\(3x^2 - 11x - 20\)[/tex] is:
[tex]\[ (x - 5)(3x + 4) \][/tex]
1. Identify the coefficients: The given quadratic expression is in the form [tex]\( ax^2 + bx + c \)[/tex], where [tex]\( a = 3 \)[/tex], [tex]\( b = -11 \)[/tex], and [tex]\( c = -20 \)[/tex].
2. Find two numbers that multiply to [tex]\( ac \)[/tex]:
- Here, [tex]\( a \cdot c = 3 \cdot (-20) = -60 \)[/tex].
- We need to find two numbers that multiply to [tex]\(-60\)[/tex] and add up to [tex]\( b = -11 \)[/tex].
3. Determine these two numbers:
- The numbers that fit these conditions are [tex]\( -15 \)[/tex] and [tex]\( 4 \)[/tex].
- This is because [tex]\(-15 \times 4 = -60\)[/tex] and [tex]\(-15 + 4 = -11\)[/tex].
4. Rewrite the middle term:
- Express the quadratic expression by splitting the middle term:
[tex]\[ 3x^2 - 15x + 4x - 20 \][/tex]
5. Group the terms:
- Group the terms into two pairs:
[tex]\[ (3x^2 - 15x) + (4x - 20) \][/tex]
6. Factor out the greatest common factor (GCF) from each pair:
- From the first pair [tex]\(3x^2 - 15x\)[/tex], factor out [tex]\(3x\)[/tex]:
[tex]\[ 3x(x - 5) \][/tex]
- From the second pair [tex]\(4x - 20\)[/tex], factor out [tex]\(4\)[/tex]:
[tex]\[ 4(x - 5) \][/tex]
7. Combine the factored expressions:
- Now the expression looks like:
[tex]\[ 3x(x - 5) + 4(x - 5) \][/tex]
- Notice that [tex]\((x - 5)\)[/tex] is a common factor.
8. Factor out the common binomial [tex]\((x - 5)\)[/tex]:
- Combine the terms:
[tex]\[ (x - 5)(3x + 4) \][/tex]
Thus, the fully factored form of the quadratic expression [tex]\(3x^2 - 11x - 20\)[/tex] is:
[tex]\[ (x - 5)(3x + 4) \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.