Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which of the given piecewise relations defines a function, let's analyze each case.
Relation 1:
[tex]\[y = \left\{ \begin{array}{cl} x^2, & x < -2 \\ 0, & -2 \leq x \leq 4 \\ -x^2, & x \geq 4 \end{array} \right.\][/tex]
We need to check the values at the boundaries of each interval:
- For [tex]\(x = -2\)[/tex]:
- In the first interval: [tex]\(x < -2 \Rightarrow x^2\)[/tex]
- In the second interval: [tex]\(-2 \leq x \leq 4 \Rightarrow 0\)[/tex]
Clearly, at [tex]\(x = -2\)[/tex], [tex]\(y\)[/tex] takes the value [tex]\(0\)[/tex]. This is consistent.
- For [tex]\(x = 4\)[/tex]:
- In the second interval: [tex]\(-2 \leq x \leq 4 \Rightarrow 0\)[/tex]
- In the third interval: [tex]\(x \geq 4 \Rightarrow -x^2\)[/tex]
At [tex]\(x = 4\)[/tex], the value of [tex]\(y\)[/tex] should be:
- [tex]\(0\)[/tex] from the second interval,
- [tex]\(-16\)[/tex] from the third interval.
Since [tex]\(y\)[/tex] takes different values [tex]\(0\)[/tex] and [tex]\(-16\)[/tex] at [tex]\(x = 4\)[/tex], this relation is not a function.
Relation 2:
[tex]\[y = \left\{ \begin{array}{cl} x^2, & x \leq -2 \\ 4, & -2 < x \leq 2 \\ x^2 + 1, & x \geq 2 \end{array} \right.\][/tex]
Check the values at the boundaries of each interval:
- For [tex]\(x = -2\)[/tex]:
- In the first interval: [tex]\(x \leq -2 \Rightarrow x^2\)[/tex]
- In the second interval: [tex]\(-2 < x \leq 2 \Rightarrow 4\)[/tex]
At [tex]\(x = -2\)[/tex], the value of [tex]\(y\)[/tex] should be:
- [tex]\(4\)[/tex] from the second interval,
- [tex]\((-2)^2 = 4\)[/tex] from the first interval.
So, [tex]\(y = 4\)[/tex] at [tex]\(x = -2\)[/tex] in both cases. This is consistent.
- For [tex]\(x = 2\)[/tex]:
- In the second interval: [tex]\(-2 < x \leq 2 \Rightarrow 4\)[/tex]
- In the third interval: [tex]\(x \geq 2 \Rightarrow x^2 + 1\)[/tex]
At [tex]\(x = 2\)[/tex], the value of [tex]\(y\)[/tex] should be:
- [tex]\(4\)[/tex] from the second interval,
- [tex]\(2^2 + 1 = 5\)[/tex] from the third interval.
Since [tex]\(y\)[/tex] takes different values [tex]\(4\)[/tex] and [tex]\(5\)[/tex] at [tex]\(x = 2\)[/tex], this relation is not a function.
Relation 3:
[tex]\[y = \left\{ \begin{aligned} -3x, & \quad x < -2 \\ 3, & \quad 0 \leq x < 4 \\ 2x, & \quad x \geq 4 \end{aligned} \right.\][/tex]
Check the boundaries of each interval:
- For [tex]\(x = -2\)[/tex]:
- In the first interval: [tex]\(x < -2 \Rightarrow -3x\)[/tex]
Since [tex]\(-2\)[/tex] is not included in any interval, there is no issue at [tex]\(-2\)[/tex].
- For [tex]\(x = 0\)[/tex]:
- Not included in [tex]\(x < -2\)[/tex]
- In the second interval: [tex]\(0 \leq x < 4 \Rightarrow 3\)[/tex]
- Not included in [tex]\(x \geq 4\)[/tex]
Since [tex]\(0\)[/tex] is only included once, [tex]\(y\)[/tex] takes a unique value [tex]\(3\)[/tex], which is consistent.
- For [tex]\(x = 4\)[/tex]:
- Not included in [tex]\(x < -2\)[/tex]
- In the second interval: [tex]\(0 \leq x < 4 \Rightarrow 3\)[/tex]
- In the third interval: [tex]\(x \geq 4 \Rightarrow 2x\)[/tex]
At [tex]\(x = 4\)[/tex], the value of [tex]\(y\)[/tex] should be:
- [tex]\(3\)[/tex] from the second interval,
- [tex]\(8\)[/tex] from the third interval.
Since [tex]\(y\)[/tex] takes different values [tex]\(3\)[/tex] and [tex]\(8\)[/tex], this relation is not a function.
Relation 4:
[tex]\[y = \left\{ \begin{aligned} -3x, & \quad x \leq -4 \\ 3, & \quad -5 < x < 1 \end{aligned} \right.\][/tex]
Check the boundaries of each interval:
- For [tex]\(x = -4\)[/tex]:
- In the first interval: [tex]\(x \leq -4 \Rightarrow -3x\)[/tex]
- In the second interval: [tex]\(-5 < x < 1 \Rightarrow 3\)[/tex]
At [tex]\(x = -4\)[/tex], the value of [tex]\(y\)[/tex] should be:
- [tex]\( -3(-4) = 12\)[/tex]
- Not included in the second interval.
Thus, this relation defines two different values at [tex]\(x = -4\)[/tex] and is not a function.
Since none of these piecewise relations fit the criteria to define a consistent function, the final conclusion is that none of them define a function.
Relation 1:
[tex]\[y = \left\{ \begin{array}{cl} x^2, & x < -2 \\ 0, & -2 \leq x \leq 4 \\ -x^2, & x \geq 4 \end{array} \right.\][/tex]
We need to check the values at the boundaries of each interval:
- For [tex]\(x = -2\)[/tex]:
- In the first interval: [tex]\(x < -2 \Rightarrow x^2\)[/tex]
- In the second interval: [tex]\(-2 \leq x \leq 4 \Rightarrow 0\)[/tex]
Clearly, at [tex]\(x = -2\)[/tex], [tex]\(y\)[/tex] takes the value [tex]\(0\)[/tex]. This is consistent.
- For [tex]\(x = 4\)[/tex]:
- In the second interval: [tex]\(-2 \leq x \leq 4 \Rightarrow 0\)[/tex]
- In the third interval: [tex]\(x \geq 4 \Rightarrow -x^2\)[/tex]
At [tex]\(x = 4\)[/tex], the value of [tex]\(y\)[/tex] should be:
- [tex]\(0\)[/tex] from the second interval,
- [tex]\(-16\)[/tex] from the third interval.
Since [tex]\(y\)[/tex] takes different values [tex]\(0\)[/tex] and [tex]\(-16\)[/tex] at [tex]\(x = 4\)[/tex], this relation is not a function.
Relation 2:
[tex]\[y = \left\{ \begin{array}{cl} x^2, & x \leq -2 \\ 4, & -2 < x \leq 2 \\ x^2 + 1, & x \geq 2 \end{array} \right.\][/tex]
Check the values at the boundaries of each interval:
- For [tex]\(x = -2\)[/tex]:
- In the first interval: [tex]\(x \leq -2 \Rightarrow x^2\)[/tex]
- In the second interval: [tex]\(-2 < x \leq 2 \Rightarrow 4\)[/tex]
At [tex]\(x = -2\)[/tex], the value of [tex]\(y\)[/tex] should be:
- [tex]\(4\)[/tex] from the second interval,
- [tex]\((-2)^2 = 4\)[/tex] from the first interval.
So, [tex]\(y = 4\)[/tex] at [tex]\(x = -2\)[/tex] in both cases. This is consistent.
- For [tex]\(x = 2\)[/tex]:
- In the second interval: [tex]\(-2 < x \leq 2 \Rightarrow 4\)[/tex]
- In the third interval: [tex]\(x \geq 2 \Rightarrow x^2 + 1\)[/tex]
At [tex]\(x = 2\)[/tex], the value of [tex]\(y\)[/tex] should be:
- [tex]\(4\)[/tex] from the second interval,
- [tex]\(2^2 + 1 = 5\)[/tex] from the third interval.
Since [tex]\(y\)[/tex] takes different values [tex]\(4\)[/tex] and [tex]\(5\)[/tex] at [tex]\(x = 2\)[/tex], this relation is not a function.
Relation 3:
[tex]\[y = \left\{ \begin{aligned} -3x, & \quad x < -2 \\ 3, & \quad 0 \leq x < 4 \\ 2x, & \quad x \geq 4 \end{aligned} \right.\][/tex]
Check the boundaries of each interval:
- For [tex]\(x = -2\)[/tex]:
- In the first interval: [tex]\(x < -2 \Rightarrow -3x\)[/tex]
Since [tex]\(-2\)[/tex] is not included in any interval, there is no issue at [tex]\(-2\)[/tex].
- For [tex]\(x = 0\)[/tex]:
- Not included in [tex]\(x < -2\)[/tex]
- In the second interval: [tex]\(0 \leq x < 4 \Rightarrow 3\)[/tex]
- Not included in [tex]\(x \geq 4\)[/tex]
Since [tex]\(0\)[/tex] is only included once, [tex]\(y\)[/tex] takes a unique value [tex]\(3\)[/tex], which is consistent.
- For [tex]\(x = 4\)[/tex]:
- Not included in [tex]\(x < -2\)[/tex]
- In the second interval: [tex]\(0 \leq x < 4 \Rightarrow 3\)[/tex]
- In the third interval: [tex]\(x \geq 4 \Rightarrow 2x\)[/tex]
At [tex]\(x = 4\)[/tex], the value of [tex]\(y\)[/tex] should be:
- [tex]\(3\)[/tex] from the second interval,
- [tex]\(8\)[/tex] from the third interval.
Since [tex]\(y\)[/tex] takes different values [tex]\(3\)[/tex] and [tex]\(8\)[/tex], this relation is not a function.
Relation 4:
[tex]\[y = \left\{ \begin{aligned} -3x, & \quad x \leq -4 \\ 3, & \quad -5 < x < 1 \end{aligned} \right.\][/tex]
Check the boundaries of each interval:
- For [tex]\(x = -4\)[/tex]:
- In the first interval: [tex]\(x \leq -4 \Rightarrow -3x\)[/tex]
- In the second interval: [tex]\(-5 < x < 1 \Rightarrow 3\)[/tex]
At [tex]\(x = -4\)[/tex], the value of [tex]\(y\)[/tex] should be:
- [tex]\( -3(-4) = 12\)[/tex]
- Not included in the second interval.
Thus, this relation defines two different values at [tex]\(x = -4\)[/tex] and is not a function.
Since none of these piecewise relations fit the criteria to define a consistent function, the final conclusion is that none of them define a function.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.