Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which two runners ran at the same rate, we need to find the rate at which each runner covered the distance. The rate is calculated as the distance covered divided by the time taken. Let's compute the rates:
1. Henry:
- Distance: 2 units
- Time: 6 units
- Rate: [tex]\( \frac{2 \text{ units}}{6 \text{ units}} = \frac{1}{3} \)[/tex]
2. Adya:
- Distance: [tex]\( 1 \frac{1}{2} \)[/tex] units (which is 1.5 units)
- Time: 5 units
- Rate: [tex]\( \frac{1.5 \text{ units}}{5 \text{ units}} = \frac{1.5}{5} = 0.3 \)[/tex]
3. Lily:
- Distance: 2 units
- Time: [tex]\( 3 \frac{1}{2} \)[/tex] units (which is 3.5 units)
- Rate: [tex]\( \frac{2 \text{ units}}{3.5 \text{ units}} = \frac{2}{3.5} \approx 0.571428571 \)[/tex]
4. Bert:
- Distance: [tex]\( 1 \frac{1}{2} \)[/tex] units (which is 1.5 units)
- Time: 9 units
- Rate: [tex]\( \frac{1.5 \text{ units}}{9 \text{ units}} = \frac{1.5}{9} = \frac{1}{6} \)[/tex]
Now, let's compare these rates to identify the two runners who ran at the same rate:
- Henry's Rate: [tex]\( \frac{1}{3} \approx 0.33333333 \)[/tex]
- Adya's Rate: 0.3
- Lily's Rate: [tex]\( \approx 0.571428571 \)[/tex]
- Bert's Rate: [tex]\( \frac{1}{6} \approx 0.16666667 \)[/tex]
As we see, none of the rates match exactly.
Therefore, the two runners who ran at the same rate are not present in the given set, none of the pairs have matching rates. Hence, no two runners have a proportional relationship of time and distance.
1. Henry:
- Distance: 2 units
- Time: 6 units
- Rate: [tex]\( \frac{2 \text{ units}}{6 \text{ units}} = \frac{1}{3} \)[/tex]
2. Adya:
- Distance: [tex]\( 1 \frac{1}{2} \)[/tex] units (which is 1.5 units)
- Time: 5 units
- Rate: [tex]\( \frac{1.5 \text{ units}}{5 \text{ units}} = \frac{1.5}{5} = 0.3 \)[/tex]
3. Lily:
- Distance: 2 units
- Time: [tex]\( 3 \frac{1}{2} \)[/tex] units (which is 3.5 units)
- Rate: [tex]\( \frac{2 \text{ units}}{3.5 \text{ units}} = \frac{2}{3.5} \approx 0.571428571 \)[/tex]
4. Bert:
- Distance: [tex]\( 1 \frac{1}{2} \)[/tex] units (which is 1.5 units)
- Time: 9 units
- Rate: [tex]\( \frac{1.5 \text{ units}}{9 \text{ units}} = \frac{1.5}{9} = \frac{1}{6} \)[/tex]
Now, let's compare these rates to identify the two runners who ran at the same rate:
- Henry's Rate: [tex]\( \frac{1}{3} \approx 0.33333333 \)[/tex]
- Adya's Rate: 0.3
- Lily's Rate: [tex]\( \approx 0.571428571 \)[/tex]
- Bert's Rate: [tex]\( \frac{1}{6} \approx 0.16666667 \)[/tex]
As we see, none of the rates match exactly.
Therefore, the two runners who ran at the same rate are not present in the given set, none of the pairs have matching rates. Hence, no two runners have a proportional relationship of time and distance.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.