Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

What is the value of [tex]\( f(1) \)[/tex] for the piecewise defined function below?

[tex]\[
f(x)=\left\{\begin{array}{cl}
x^2+1, & -4 \leq x\ \textless \ 1 \\
-x^2, & 1 \leq x\ \textless \ 2 \\
3x, & x \geq 2
\end{array}\right.
\][/tex]

A. [tex]\( f(1) = -2 \)[/tex]

B. [tex]\( f(1) = -1 \)[/tex]

C. [tex]\( f(1) = 2 \)[/tex]

D. [tex]\( f(1) = 3 \)[/tex]


Sagot :

To determine the value of [tex]\( f(1) \)[/tex] for the given piecewise function, we need to see which piece of the function applies when [tex]\( x \)[/tex] is equal to 1.

The piecewise function is defined as follows:
[tex]\[ f(x) = \begin{cases} x^2 + 1, & \text{for } -4 \leq x < 1 \\ -x^2, & \text{for } 1 \leq x < 2 \\ 3x, & \text{for } x \geq 2 \end{cases} \][/tex]

We are interested in the value of [tex]\( f(1) \)[/tex]. Let's locate which piece of the function covers [tex]\( x = 1 \)[/tex]:

1. The first piece [tex]\( x^2 + 1 \)[/tex] applies for [tex]\( -4 \leq x < 1 \)[/tex]. Since 1 is not within this interval (it is the endpoint but not less than 1), this piece does not apply.
2. The second piece [tex]\( -x^2 \)[/tex] applies for [tex]\( 1 \leq x < 2 \)[/tex]. Since [tex]\( x = 1 \)[/tex] falls within this interval, we use this piece.
3. The third piece [tex]\( 3x \)[/tex] applies for [tex]\( x \geq 2 \)[/tex]. Since 1 is not greater than or equal to 2, this piece does not apply.

Now, evaluate the function using the relevant piece:
[tex]\[ f(x) = -x^2 \][/tex]
At [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = -(1)^2 = -1 \][/tex]

The value of [tex]\( f(1) \)[/tex] is [tex]\(-1\)[/tex], which matches the provided answer.

Therefore, the correct option is:
[tex]\[ f(1) = -1 \][/tex]