Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the value of the contour integral
[tex]\[ \oint_{\partial B_{3 / 2}(2 i)} \operatorname{Re}\left(\frac{e^{\pi z}-3}{z}\right) \cdot \frac{1}{(z-2 i)} \, dz, \][/tex]
we'll use principles from complex analysis, specifically leveraging the residue theorem.
1. Identify the Contour and Pole:
- The contour is [tex]\( \partial B_{3/2}(2i) \)[/tex], which is a circle centered at [tex]\( 2i \)[/tex] with radius [tex]\( 3/2 \)[/tex].
- The function inside the integral is [tex]\( \operatorname{Re}\left(\frac{e^{\pi z}-3}{z}\right) \cdot \frac{1}{(z-2i)} \)[/tex].
2. Analyze the Function:
- The function can be split into two parts:
[tex]\[ \operatorname{Re}\left(\frac{e^{\pi z}-3}{z}\right) \][/tex]
and
[tex]\[ \frac{1}{(z-2i)}. \][/tex]
- The term [tex]\( \frac{1}{(z-2i)} \)[/tex] clearly indicates a potential pole at [tex]\( z = 2i \)[/tex].
3. Finding the Residue:
- The Residue Theorem tells us that if we have a contour integral around a closed loop, the integral is [tex]\( 2\pi i \)[/tex] times the sum of residues inside the contour.
- First, we focus on finding the residue at [tex]\( z = 2i \)[/tex].
We need to calculate the residue at [tex]\( z = 2i \)[/tex] for [tex]\( \operatorname{Re}\left(\frac{e^{\pi z}-3}{z}\right) \cdot \frac{1}{(z-2i)} \)[/tex].
4. Calculate Residue at [tex]\( z = 2i \)[/tex]:
- To find the residue, we need to isolate the singular part of the function.
- Consider [tex]\( f(z) = \operatorname{Re}\left(\frac{e^{\pi z}-3}{z}\right) \)[/tex]. Evaluating this at [tex]\( z = 2i \)[/tex]:
[tex]\[ \operatorname{Re}\left(\frac{e^{\pi (2i)}-3}{2i}\right) \][/tex]
- Using Euler's formula, [tex]\( e^{\pi (2i)} = e^{2\pi i} = \cos(2\pi) + i\sin(2\pi) = 1 \)[/tex], giving us:
[tex]\[ \operatorname{Re}\left(\frac{1-3}{2i}\right) = \operatorname{Re}\left(\frac{-2}{2i}\right) = \operatorname{Re}\left(\frac{-2}{2i}\right) = \operatorname{Re}\left(\frac{-1}{i}\right) = \operatorname{Re}(i) = 0 \][/tex]
5. Evaluate the Integral:
- Since the real part calculated results in zero, there is no residue at [tex]\( z = 2i \)[/tex].
- According to the residue theorem, if the sum of residues within the contour is zero, the contour integral itself is zero.
Hence, the result of the integral is:
[tex]\[ \oint_{\partial B_{3/2}(2i)} \operatorname{Re}\left(\frac{e^{\pi z}-3}{z}\right) \cdot \frac{1}{(z-2i)} \, dz = 0. \][/tex]
[tex]\[ \oint_{\partial B_{3 / 2}(2 i)} \operatorname{Re}\left(\frac{e^{\pi z}-3}{z}\right) \cdot \frac{1}{(z-2 i)} \, dz, \][/tex]
we'll use principles from complex analysis, specifically leveraging the residue theorem.
1. Identify the Contour and Pole:
- The contour is [tex]\( \partial B_{3/2}(2i) \)[/tex], which is a circle centered at [tex]\( 2i \)[/tex] with radius [tex]\( 3/2 \)[/tex].
- The function inside the integral is [tex]\( \operatorname{Re}\left(\frac{e^{\pi z}-3}{z}\right) \cdot \frac{1}{(z-2i)} \)[/tex].
2. Analyze the Function:
- The function can be split into two parts:
[tex]\[ \operatorname{Re}\left(\frac{e^{\pi z}-3}{z}\right) \][/tex]
and
[tex]\[ \frac{1}{(z-2i)}. \][/tex]
- The term [tex]\( \frac{1}{(z-2i)} \)[/tex] clearly indicates a potential pole at [tex]\( z = 2i \)[/tex].
3. Finding the Residue:
- The Residue Theorem tells us that if we have a contour integral around a closed loop, the integral is [tex]\( 2\pi i \)[/tex] times the sum of residues inside the contour.
- First, we focus on finding the residue at [tex]\( z = 2i \)[/tex].
We need to calculate the residue at [tex]\( z = 2i \)[/tex] for [tex]\( \operatorname{Re}\left(\frac{e^{\pi z}-3}{z}\right) \cdot \frac{1}{(z-2i)} \)[/tex].
4. Calculate Residue at [tex]\( z = 2i \)[/tex]:
- To find the residue, we need to isolate the singular part of the function.
- Consider [tex]\( f(z) = \operatorname{Re}\left(\frac{e^{\pi z}-3}{z}\right) \)[/tex]. Evaluating this at [tex]\( z = 2i \)[/tex]:
[tex]\[ \operatorname{Re}\left(\frac{e^{\pi (2i)}-3}{2i}\right) \][/tex]
- Using Euler's formula, [tex]\( e^{\pi (2i)} = e^{2\pi i} = \cos(2\pi) + i\sin(2\pi) = 1 \)[/tex], giving us:
[tex]\[ \operatorname{Re}\left(\frac{1-3}{2i}\right) = \operatorname{Re}\left(\frac{-2}{2i}\right) = \operatorname{Re}\left(\frac{-2}{2i}\right) = \operatorname{Re}\left(\frac{-1}{i}\right) = \operatorname{Re}(i) = 0 \][/tex]
5. Evaluate the Integral:
- Since the real part calculated results in zero, there is no residue at [tex]\( z = 2i \)[/tex].
- According to the residue theorem, if the sum of residues within the contour is zero, the contour integral itself is zero.
Hence, the result of the integral is:
[tex]\[ \oint_{\partial B_{3/2}(2i)} \operatorname{Re}\left(\frac{e^{\pi z}-3}{z}\right) \cdot \frac{1}{(z-2i)} \, dz = 0. \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.