Answered

Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

If [tex]\( f(x) = \sqrt{\frac{1}{2} x - 10} + 3 \)[/tex], which inequality can be used to find the domain of [tex]\( f(x) \)[/tex]?

A. [tex]\( \sqrt{\frac{1}{2} x} \geq 0 \)[/tex]

B. [tex]\( \frac{1}{2} x \geq 0 \)[/tex]

C. [tex]\( \frac{1}{2} x - 10 \geq 0 \)[/tex]

D. [tex]\( \sqrt{\frac{1}{2} x - 10} + 3 \geq 0 \)[/tex]

Sagot :

To determine the domain of the function [tex]\( f(x) = \sqrt{\frac{1}{2} x - 10} + 3 \)[/tex], we need to ensure that the quantity inside the square root is non-negative. In mathematical terms, the expression inside the square root must be greater than or equal to zero, because the square root of a negative number is not defined in the set of real numbers.

We start by focusing on the expression inside the square root:
[tex]\[ \sqrt{\frac{1}{2} x - 10} \][/tex]

For this expression to be defined, we require that:
[tex]\[ \frac{1}{2} x - 10 \geq 0 \][/tex]

Next, we solve this inequality step by step:

1. Isolate [tex]\( x \)[/tex]:
[tex]\[ \frac{1}{2} x - 10 \geq 0 \][/tex]

2. Add 10 to both sides:
[tex]\[ \frac{1}{2} x \geq 10 \][/tex]

3. Multiply both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ x \geq 20 \][/tex]

So, the inequality that represents the domain of the function [tex]\( f(x) = \sqrt{\frac{1}{2} x - 10} + 3 \)[/tex] is:
[tex]\[ \frac{1}{2} x - 10 \geq 0 \][/tex]

Thus, the correct choice from the given options is:
[tex]\[ \frac{1}{2} x - 10 \geq 0 \][/tex]