Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Consider the following events:

A. The burrito is a chicken burrito.
B. The burrito is a carne asada burrito.
C. The customer requested black beans.
D. The customer requested pinto beans.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|}
\hline
& Fish & Chicken & Carne Asada & Vegetarian & Total \\
\hline
Black Beans & 2 & 37 & 5 & 1 & 45 \\
\hline
Pinto Beans & 10 & 30 & 24 & 8 & 72 \\
\hline
No Beans & 36 & 16 & 51 & 20 & 123 \\
\hline
Total & 48 & 83 & 80 & 29 & 240 \\
\hline
\end{tabular}
\][/tex]

Which two events are independent?

A. A and C
B. A and D
C. B and C
D. B and D


Sagot :

To determine the independence of two events, we compare the joint probability of the events with the product of their individual (marginal) probabilities. Events [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent if and only if [tex]\( P(X \ \text{and} \ Y) = P(X) \times P(Y) \)[/tex].

Given the data from the contingency table and our recognized events:
- [tex]\(A\)[/tex]: The burrito is a chicken burrito.
- [tex]\(B\)[/tex]: The burrito is a carne asada burrito.
- [tex]\(C\)[/tex]: The customer requested black beans.
- [tex]\(D\)[/tex]: The customer requested pinto beans.

### Step-by-Step Solution:

1. Calculate the total number of samples:
[tex]\[ \text{Total count} = 240 \][/tex]

2. Calculate the marginal probabilities:
[tex]\[ P(A) = \frac{83}{240} \][/tex]
[tex]\[ P(B) = \frac{80}{240} \][/tex]
[tex]\[ P(C) = \frac{45}{240} \][/tex]
[tex]\[ P(D) = \frac{72}{240} \][/tex]

3. Calculate the joint probabilities:
[tex]\[ P(A \ \text{and} \ C) = \frac{37}{240} \][/tex]
[tex]\[ P(A \ \text{and} \ D) = \frac{30}{240} \][/tex]
[tex]\[ P(B \ \text{and} \ C) = \frac{5}{240} \][/tex]
[tex]\[ P(B \ \text{and} \ D) = \frac{24}{240} \][/tex]

4. Compare the joint probability with the product of marginal probabilities:

a. For [tex]\( A \ \text{and} \ C \)[/tex]:
[tex]\[ P(A \ \text{and} \ C) \neq P(A) \times P(C) \][/tex]
[tex]\[ \frac{37}{240} \neq \frac{83}{240} \times \frac{45}{240} \][/tex]
Therefore, [tex]\( A \ \text{and} \ C \)[/tex] are not independent.

b. For [tex]\( A \ \text{and} \ D \)[/tex]:
[tex]\[ P(A \ \text{and} \ D) \neq P(A) \times P(D) \][/tex]
[tex]\[ \frac{30}{240} \neq \frac{83}{240} \times \frac{72}{240} \][/tex]
Therefore, [tex]\( A \ \text{and} \ D \)[/tex] are not independent.

c. For [tex]\( B \ \text{and} \ C \)[/tex]:
[tex]\[ P(B \ \text{and} \ C) \neq P(B) \times P(C) \][/tex]
[tex]\[ \frac{5}{240} \neq \frac{80}{240} \times \frac{45}{240} \][/tex]
Therefore, [tex]\( B \ \text{and} \ C \)[/tex] are not independent.

d. For [tex]\( B \ \text{and} \ D \)[/tex]:
[tex]\[ P(B \ \text{and} \ D) \neq P(B) \times P(D) \][/tex]
[tex]\[ \frac{24}{240} \neq \frac{80}{240} \times \frac{72}{240} \][/tex]
Therefore, [tex]\( B \ \text{and} \ D \)[/tex] are not independent.

After examining all pairs, we can confirm that none of the events [tex]\(A\)[/tex] and [tex]\(C\)[/tex], [tex]\(A\)[/tex] and [tex]\(D\)[/tex], [tex]\(B\)[/tex] and [tex]\(C\)[/tex], [tex]\(B\)[/tex] and [tex]\(D\)[/tex] are independent.

Thus, the answer is:

None of the given pairs of events are independent.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.