Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the formula for the viscous force [tex]\( f \)[/tex] acting on a solid sphere moving through a liquid, we use dimensional analysis. The viscous force is found to depend on the coefficient of viscosity [tex]\( \eta \)[/tex], the radius [tex]\( M \)[/tex] of the sphere, and its speed [tex]\( U \)[/tex].
We will express [tex]\( f \)[/tex] as a function of [tex]\( \eta \)[/tex], [tex]\( M \)[/tex], [tex]\( U \)[/tex], and a proportionality constant [tex]\( k \)[/tex]:
[tex]\[ f = k \cdot \eta^a \cdot M^b \cdot U^c \][/tex]
### Step 1: Determine Dimensions of Each Quantity
1. Viscous Force [tex]\( f \)[/tex]:
- Dimension: [tex]\([f] = \text{MLT}^{-2}\)[/tex]
2. Coefficient of Viscosity [tex]\( \eta \)[/tex]:
- Dimension: [tex]\([\eta] = \text{ML}^{-1}\text{T}^{-1}\)[/tex]
3. Radius [tex]\( M \)[/tex]:
- Dimension: [tex]\([M] = \text{L}\)[/tex]
4. Speed [tex]\( U \)[/tex]:
- Dimension: [tex]\([U] = \text{LT}^{-1}\)[/tex]
### Step 2: Set Up Dimensional Equation
We need the dimensions on both sides of the equation [tex]\( f = k \eta^a M^b U^c \)[/tex] to be consistent. Thus,
[tex]\[ [f] = [k \eta^a M^b U^c] \][/tex]
Substituting the dimensions, we get:
[tex]\[ \text{MLT}^{-2} = [k] \cdot (\text{ML}^{-1}\text{T}^{-1})^a \cdot (\text{L})^b \cdot (\text{LT}^{-1})^c \][/tex]
### Step 3: Break Down the Dimensions
Combining the dimensions, we get:
[tex]\[ \text{MLT}^{-2} = \text{M}^a \cdot \text{L}^{-a} \cdot \text{T}^{-a} \cdot \text{L}^b \cdot \text{L}^c \cdot \text{T}^{-c} \][/tex]
Simplifying the dimensions, we have:
[tex]\[ \text{MLT}^{-2} = \text{M}^a \cdot \text{L}^{-a+b+c} \cdot \text{T}^{-a-c} \][/tex]
### Step 4: Equate the Exponents
Equating the exponents for [tex]\( \text{M} \)[/tex], [tex]\( \text{L} \)[/tex], and [tex]\( \text{T} \)[/tex] on both sides, we get three equations:
1. For mass (M):
[tex]\[ 1 = a \][/tex]
2. For length (L):
[tex]\[ 1 = -a + b + c \][/tex]
3. For time (T):
[tex]\[ -2 = -a - c \][/tex]
### Step 5: Solve the System of Equations
From the first equation:
[tex]\[ a = 1 \][/tex]
Substituting [tex]\( a = 1 \)[/tex] in the third equation:
[tex]\[ -2 = -1 - c \][/tex]
[tex]\[ -1 - c = -2 \][/tex]
[tex]\[ c = 1 \][/tex]
Substituting [tex]\( a = 1 \)[/tex] and [tex]\( c = 1 \)[/tex] in the second equation:
[tex]\[ 1 = -1 + b + 1 \][/tex]
[tex]\[ 1 = b \][/tex]
### Step 6: Write the Final Formula
Substituting [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = 1 \)[/tex] into our original expression [tex]\( f = k \eta^a M^b U^c \)[/tex], we obtain:
[tex]\[ f = k \eta^1 M^1 U^1 \][/tex]
Therefore, the formula for the viscous force [tex]\( f \)[/tex] is:
[tex]\[ f = k \eta M U \][/tex]
where [tex]\( k \)[/tex] is a dimensionless proportionality constant.
We will express [tex]\( f \)[/tex] as a function of [tex]\( \eta \)[/tex], [tex]\( M \)[/tex], [tex]\( U \)[/tex], and a proportionality constant [tex]\( k \)[/tex]:
[tex]\[ f = k \cdot \eta^a \cdot M^b \cdot U^c \][/tex]
### Step 1: Determine Dimensions of Each Quantity
1. Viscous Force [tex]\( f \)[/tex]:
- Dimension: [tex]\([f] = \text{MLT}^{-2}\)[/tex]
2. Coefficient of Viscosity [tex]\( \eta \)[/tex]:
- Dimension: [tex]\([\eta] = \text{ML}^{-1}\text{T}^{-1}\)[/tex]
3. Radius [tex]\( M \)[/tex]:
- Dimension: [tex]\([M] = \text{L}\)[/tex]
4. Speed [tex]\( U \)[/tex]:
- Dimension: [tex]\([U] = \text{LT}^{-1}\)[/tex]
### Step 2: Set Up Dimensional Equation
We need the dimensions on both sides of the equation [tex]\( f = k \eta^a M^b U^c \)[/tex] to be consistent. Thus,
[tex]\[ [f] = [k \eta^a M^b U^c] \][/tex]
Substituting the dimensions, we get:
[tex]\[ \text{MLT}^{-2} = [k] \cdot (\text{ML}^{-1}\text{T}^{-1})^a \cdot (\text{L})^b \cdot (\text{LT}^{-1})^c \][/tex]
### Step 3: Break Down the Dimensions
Combining the dimensions, we get:
[tex]\[ \text{MLT}^{-2} = \text{M}^a \cdot \text{L}^{-a} \cdot \text{T}^{-a} \cdot \text{L}^b \cdot \text{L}^c \cdot \text{T}^{-c} \][/tex]
Simplifying the dimensions, we have:
[tex]\[ \text{MLT}^{-2} = \text{M}^a \cdot \text{L}^{-a+b+c} \cdot \text{T}^{-a-c} \][/tex]
### Step 4: Equate the Exponents
Equating the exponents for [tex]\( \text{M} \)[/tex], [tex]\( \text{L} \)[/tex], and [tex]\( \text{T} \)[/tex] on both sides, we get three equations:
1. For mass (M):
[tex]\[ 1 = a \][/tex]
2. For length (L):
[tex]\[ 1 = -a + b + c \][/tex]
3. For time (T):
[tex]\[ -2 = -a - c \][/tex]
### Step 5: Solve the System of Equations
From the first equation:
[tex]\[ a = 1 \][/tex]
Substituting [tex]\( a = 1 \)[/tex] in the third equation:
[tex]\[ -2 = -1 - c \][/tex]
[tex]\[ -1 - c = -2 \][/tex]
[tex]\[ c = 1 \][/tex]
Substituting [tex]\( a = 1 \)[/tex] and [tex]\( c = 1 \)[/tex] in the second equation:
[tex]\[ 1 = -1 + b + 1 \][/tex]
[tex]\[ 1 = b \][/tex]
### Step 6: Write the Final Formula
Substituting [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = 1 \)[/tex] into our original expression [tex]\( f = k \eta^a M^b U^c \)[/tex], we obtain:
[tex]\[ f = k \eta^1 M^1 U^1 \][/tex]
Therefore, the formula for the viscous force [tex]\( f \)[/tex] is:
[tex]\[ f = k \eta M U \][/tex]
where [tex]\( k \)[/tex] is a dimensionless proportionality constant.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.