Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Identify the horizontal asymptote, domain and range of the exponential function:

f(x)= 2^{x}+3


Sagot :

Answer:- Horizontal Asymptote: y = 3

- Domain: all real numbers (x ∈ ℝ)

- Range: y ≥ 3, or [3, ∞)

Step-by-step explanation:The characteristics of the exponential function f(x) = 2^x + 3:

*Horizontal Asymptote:*

The horizontal asymptote is y = 3.

As x approaches negative infinity (−∞), the value of 2^x approaches 0, so the function approaches 3. As x approaches positive infinity (∞), the value of 2^x grows exponentially, but the function never touches the horizontal asymptote.

*Domain:*

The domain is all real numbers, x ∈ ℝ.

*Range:*

The range is y ≥ 3, or [3, ∞).

In other words:

- The function is defined for all real numbers (domain).

- The output values are always greater than or equal to 3 (range).