Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Maths (05/05/2024)

1. Find the missing entries in the following table:

| Fraction in Standard Form | Numerator | Denominator | Sign of the Rational Number |
|---------------------------|-----------|-------------|-----------------------------|
| [tex]\(\frac{-3 \times 3}{8 \times 3}\)[/tex] | - | 24 | - |
| [tex]\(\frac{6}{7}\)[/tex] | 84 | - | Positive |
| - | -5 | -8 | - |
| [tex]\(\frac{-21 \times 2}{71 \times -2}\)[/tex] | - | -142 | Negative |


Sagot :

Let's complete the table by finding the missing entries step-by-step.

1. For the first fraction [tex]\(\frac{-3 \times 3}{8 \times 3}\)[/tex]:
- The numerator is [tex]\(-3 \times 3\)[/tex].
[tex]\[ -3 \times 3 = -9 \][/tex]
So, the numerator is [tex]\(-9\)[/tex].
- The denominator is [tex]\(8 \times 3\)[/tex], which is already given as 24.
- To find the sign of the rational number, note that the numerator is [tex]\(-9\)[/tex] (negative) and the denominator is [tex]\(24\)[/tex] (positive).
[tex]\[ \text{Sign} = \text{Numerator} < 0 \rightarrow \text{Negative} \][/tex]
Therefore, the sign is "Negative".

2. For the second fraction [tex]\(\frac{6}{7}\)[/tex]:
- The given entry shows that the fraction should be equivalent to having a numerator of 84. To find the denominator:
[tex]\[ \frac{6}{7} \text{ equivalent to } \frac{84}{x} \][/tex]
We scale the original fraction by a factor that transforms 6 to 84:
[tex]\[ 6 \times 14 = 84 \][/tex]
Therefore,
[tex]\[ x = 7 \times 14 = 98 \][/tex]
So, the denominator is [tex]\(98\)[/tex].
- The sign of the rational number is given as "Positive".

3. For the third fraction:
- We are given the numerator as [tex]\(-5\)[/tex] and the denominator as [tex]\(-8\)[/tex].
- To find the sign of the rational number, note that both the numerator and the denominator are negative.
[tex]\[ \frac{\text{Negative}}{\text{Negative}} = \text{Positive} \][/tex]
Therefore, the sign is "Positive".

4. For the fourth fraction [tex]\(\frac{-21 \times 2}{71 \times -2}\)[/tex]:
- The numerator is [tex]\(-21 \times 2\)[/tex].
[tex]\[ -21 \times 2 = -42 \][/tex]
So, the numerator is [tex]\(-42\)[/tex].
- The denominator is [tex]\(71 \times -2\)[/tex], which is already given as [tex]\(-142\)[/tex].
- To find the sign of the rational number, note that both the numerator and the denominator are negative or positive. However, we consider its simplified version:
[tex]\[ \frac{\text{Negative}}{\text{Positive or Negative}} = \text{Positive} \rightarrow \text{Negative} \rightarrow Positive \][/tex]
Therefore, the answer, considering all, is "Positive".
```

Let's fill in the table with the completed entries:

\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{c}
Fraction in \\
Standard
\end{tabular} & Numerator & Denominator & \begin{tabular}{c}
Sign of the \\
rational number
\end{tabular} \\
\hline 1) [tex]$\frac{-3 \times 3}{8 \times 3}$[/tex] & -9 & 24 & Negative \\
\hline 2) [tex]$\frac{6}{7}$[/tex] & 84 & 98 & Positive \\
\hline 3) - & -5 & -8 & Positive \\
\hline 4) [tex]$\frac{-21 \times 2}{71 \times -2}$[/tex] & -42 & -142 & Positive \\
\hline
\end{tabular}
"`