Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to determine how many days have passed for each isotope based on their initial weight, ending measured weight, and half-life. Let's break this down step-by-step for each isotope.
### Isotope A
Isotope A has:
- Initial weight: 95 units
- Ending measured weight: 5.9 units
- Half-life: 6 days
The decay formula based on half-life is:
[tex]\[ \text{measured weight} = \text{initial weight} \times (0.5)^{\frac{t}{T}} \][/tex]
where [tex]\( t \)[/tex] is the time passed, and [tex]\( T \)[/tex] is the half-life.
Rewriting the formula to solve for [tex]\( t \)[/tex]:
[tex]\[ \frac{\text{measured weight}}{\text{initial weight}} = (0.5)^{\frac{t}{T}} \][/tex]
[tex]\[ \ln\left( \frac{\text{measured weight}}{\text{initial weight}} \right) = \frac{t}{T} \ln(0.5) \][/tex]
[tex]\[ t = \frac{\ln\left( \frac{\text{measured weight}}{\text{initial weight}} \right)}{\ln(0.5)} \times T \][/tex]
Plugging in the values for Isotope A:
[tex]\[ t_A = \frac{\ln\left( \frac{5.9}{95} \right)}{\ln(0.5)} \times 6 \][/tex]
After calculating, we find:
[tex]\[ t_A \approx 24 \text{ days} \][/tex]
### Isotope B
Isotope B has:
- Initial weight: 20 units
- Ending measured weight: 2.5 units
- Half-life: 2 days
Using the same decay formula and solving for [tex]\( t \)[/tex]:
[tex]\[ t_B = \frac{\ln\left( \frac{2.5}{20} \right)}{\ln(0.5)} \times 2 \][/tex]
After calculating, we find:
[tex]\[ t_B \approx 6 \text{ days} \][/tex]
### Isotope C
Isotope C has:
- Initial weight: 45 units
- Ending measured weight: 22.5 units
- Half-life: 10 days
Using the same decay formula and solving for [tex]\( t \)[/tex]:
[tex]\[ t_C = \frac{\ln\left( \frac{22.5}{45} \right)}{\ln(0.5)} \times 10 \][/tex]
After calculating, we find:
[tex]\[ t_C \approx 10 \text{ days} \][/tex]
### Conclusion
Based on the calculations:
- Isotope A was measured at day 24.
- Isotope B was measured at day 6.
- Isotope C was measured at day 10.
Therefore, the correct statement is:
Isotope A was measured at day 24, Isotope B was measured at day 6, and Isotope C was measured at day 10.
### Isotope A
Isotope A has:
- Initial weight: 95 units
- Ending measured weight: 5.9 units
- Half-life: 6 days
The decay formula based on half-life is:
[tex]\[ \text{measured weight} = \text{initial weight} \times (0.5)^{\frac{t}{T}} \][/tex]
where [tex]\( t \)[/tex] is the time passed, and [tex]\( T \)[/tex] is the half-life.
Rewriting the formula to solve for [tex]\( t \)[/tex]:
[tex]\[ \frac{\text{measured weight}}{\text{initial weight}} = (0.5)^{\frac{t}{T}} \][/tex]
[tex]\[ \ln\left( \frac{\text{measured weight}}{\text{initial weight}} \right) = \frac{t}{T} \ln(0.5) \][/tex]
[tex]\[ t = \frac{\ln\left( \frac{\text{measured weight}}{\text{initial weight}} \right)}{\ln(0.5)} \times T \][/tex]
Plugging in the values for Isotope A:
[tex]\[ t_A = \frac{\ln\left( \frac{5.9}{95} \right)}{\ln(0.5)} \times 6 \][/tex]
After calculating, we find:
[tex]\[ t_A \approx 24 \text{ days} \][/tex]
### Isotope B
Isotope B has:
- Initial weight: 20 units
- Ending measured weight: 2.5 units
- Half-life: 2 days
Using the same decay formula and solving for [tex]\( t \)[/tex]:
[tex]\[ t_B = \frac{\ln\left( \frac{2.5}{20} \right)}{\ln(0.5)} \times 2 \][/tex]
After calculating, we find:
[tex]\[ t_B \approx 6 \text{ days} \][/tex]
### Isotope C
Isotope C has:
- Initial weight: 45 units
- Ending measured weight: 22.5 units
- Half-life: 10 days
Using the same decay formula and solving for [tex]\( t \)[/tex]:
[tex]\[ t_C = \frac{\ln\left( \frac{22.5}{45} \right)}{\ln(0.5)} \times 10 \][/tex]
After calculating, we find:
[tex]\[ t_C \approx 10 \text{ days} \][/tex]
### Conclusion
Based on the calculations:
- Isotope A was measured at day 24.
- Isotope B was measured at day 6.
- Isotope C was measured at day 10.
Therefore, the correct statement is:
Isotope A was measured at day 24, Isotope B was measured at day 6, and Isotope C was measured at day 10.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.