Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we need to determine how many days have passed for each isotope based on their initial weight, ending measured weight, and half-life. Let's break this down step-by-step for each isotope.
### Isotope A
Isotope A has:
- Initial weight: 95 units
- Ending measured weight: 5.9 units
- Half-life: 6 days
The decay formula based on half-life is:
[tex]\[ \text{measured weight} = \text{initial weight} \times (0.5)^{\frac{t}{T}} \][/tex]
where [tex]\( t \)[/tex] is the time passed, and [tex]\( T \)[/tex] is the half-life.
Rewriting the formula to solve for [tex]\( t \)[/tex]:
[tex]\[ \frac{\text{measured weight}}{\text{initial weight}} = (0.5)^{\frac{t}{T}} \][/tex]
[tex]\[ \ln\left( \frac{\text{measured weight}}{\text{initial weight}} \right) = \frac{t}{T} \ln(0.5) \][/tex]
[tex]\[ t = \frac{\ln\left( \frac{\text{measured weight}}{\text{initial weight}} \right)}{\ln(0.5)} \times T \][/tex]
Plugging in the values for Isotope A:
[tex]\[ t_A = \frac{\ln\left( \frac{5.9}{95} \right)}{\ln(0.5)} \times 6 \][/tex]
After calculating, we find:
[tex]\[ t_A \approx 24 \text{ days} \][/tex]
### Isotope B
Isotope B has:
- Initial weight: 20 units
- Ending measured weight: 2.5 units
- Half-life: 2 days
Using the same decay formula and solving for [tex]\( t \)[/tex]:
[tex]\[ t_B = \frac{\ln\left( \frac{2.5}{20} \right)}{\ln(0.5)} \times 2 \][/tex]
After calculating, we find:
[tex]\[ t_B \approx 6 \text{ days} \][/tex]
### Isotope C
Isotope C has:
- Initial weight: 45 units
- Ending measured weight: 22.5 units
- Half-life: 10 days
Using the same decay formula and solving for [tex]\( t \)[/tex]:
[tex]\[ t_C = \frac{\ln\left( \frac{22.5}{45} \right)}{\ln(0.5)} \times 10 \][/tex]
After calculating, we find:
[tex]\[ t_C \approx 10 \text{ days} \][/tex]
### Conclusion
Based on the calculations:
- Isotope A was measured at day 24.
- Isotope B was measured at day 6.
- Isotope C was measured at day 10.
Therefore, the correct statement is:
Isotope A was measured at day 24, Isotope B was measured at day 6, and Isotope C was measured at day 10.
### Isotope A
Isotope A has:
- Initial weight: 95 units
- Ending measured weight: 5.9 units
- Half-life: 6 days
The decay formula based on half-life is:
[tex]\[ \text{measured weight} = \text{initial weight} \times (0.5)^{\frac{t}{T}} \][/tex]
where [tex]\( t \)[/tex] is the time passed, and [tex]\( T \)[/tex] is the half-life.
Rewriting the formula to solve for [tex]\( t \)[/tex]:
[tex]\[ \frac{\text{measured weight}}{\text{initial weight}} = (0.5)^{\frac{t}{T}} \][/tex]
[tex]\[ \ln\left( \frac{\text{measured weight}}{\text{initial weight}} \right) = \frac{t}{T} \ln(0.5) \][/tex]
[tex]\[ t = \frac{\ln\left( \frac{\text{measured weight}}{\text{initial weight}} \right)}{\ln(0.5)} \times T \][/tex]
Plugging in the values for Isotope A:
[tex]\[ t_A = \frac{\ln\left( \frac{5.9}{95} \right)}{\ln(0.5)} \times 6 \][/tex]
After calculating, we find:
[tex]\[ t_A \approx 24 \text{ days} \][/tex]
### Isotope B
Isotope B has:
- Initial weight: 20 units
- Ending measured weight: 2.5 units
- Half-life: 2 days
Using the same decay formula and solving for [tex]\( t \)[/tex]:
[tex]\[ t_B = \frac{\ln\left( \frac{2.5}{20} \right)}{\ln(0.5)} \times 2 \][/tex]
After calculating, we find:
[tex]\[ t_B \approx 6 \text{ days} \][/tex]
### Isotope C
Isotope C has:
- Initial weight: 45 units
- Ending measured weight: 22.5 units
- Half-life: 10 days
Using the same decay formula and solving for [tex]\( t \)[/tex]:
[tex]\[ t_C = \frac{\ln\left( \frac{22.5}{45} \right)}{\ln(0.5)} \times 10 \][/tex]
After calculating, we find:
[tex]\[ t_C \approx 10 \text{ days} \][/tex]
### Conclusion
Based on the calculations:
- Isotope A was measured at day 24.
- Isotope B was measured at day 6.
- Isotope C was measured at day 10.
Therefore, the correct statement is:
Isotope A was measured at day 24, Isotope B was measured at day 6, and Isotope C was measured at day 10.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.