Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the properties of the continuous function that generated the given table of values, we need to analyze the given data points and ascertain whether there is an x-intercept. An x-intercept occurs when the function crosses the x-axis, which corresponds to a y-value of zero.
Let's examine the table of values:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0.125 & -3 \\ \hline 0.5 & -1 \\ \hline 2 & 1 \\ \hline 8 & 3 \\ \hline 64 & 6 \\ \hline \end{array} \][/tex]
We will look for any change in the sign of the y-values, as this indicates where the function crosses the x-axis (which means the function has an x-intercept).
1. From [tex]\( x = 0.125 \)[/tex] to [tex]\( x = 0.5 \)[/tex]:
- [tex]\( y \)[/tex] changes from -3 to -1 (both are negative).
2. From [tex]\( x = 0.5 \)[/tex] to [tex]\( x = 2 \)[/tex]:
- [tex]\( y \)[/tex] changes from -1 to 1 (negative to positive).
3. From [tex]\( x = 2 \)[/tex] to [tex]\( x = 8 \)[/tex]:
- [tex]\( y \)[/tex] changes from 1 to 3 (both are positive).
4. From [tex]\( x = 8 \)[/tex] to [tex]\( x = 64 \)[/tex]:
- [tex]\( y \)[/tex] changes from 3 to 6 (both are positive).
From the above observations, we notice that there is a sign change between [tex]\( x = 0.5 \)[/tex] and [tex]\( x = 2 \)[/tex] (negative to positive). This signifies that the function crosses the x-axis at least once within this interval, meaning there is at least one x-intercept.
Based on this information, we can conclude:
C. the function has at least one [tex]$x$[/tex]-intercept.
Let's examine the table of values:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0.125 & -3 \\ \hline 0.5 & -1 \\ \hline 2 & 1 \\ \hline 8 & 3 \\ \hline 64 & 6 \\ \hline \end{array} \][/tex]
We will look for any change in the sign of the y-values, as this indicates where the function crosses the x-axis (which means the function has an x-intercept).
1. From [tex]\( x = 0.125 \)[/tex] to [tex]\( x = 0.5 \)[/tex]:
- [tex]\( y \)[/tex] changes from -3 to -1 (both are negative).
2. From [tex]\( x = 0.5 \)[/tex] to [tex]\( x = 2 \)[/tex]:
- [tex]\( y \)[/tex] changes from -1 to 1 (negative to positive).
3. From [tex]\( x = 2 \)[/tex] to [tex]\( x = 8 \)[/tex]:
- [tex]\( y \)[/tex] changes from 1 to 3 (both are positive).
4. From [tex]\( x = 8 \)[/tex] to [tex]\( x = 64 \)[/tex]:
- [tex]\( y \)[/tex] changes from 3 to 6 (both are positive).
From the above observations, we notice that there is a sign change between [tex]\( x = 0.5 \)[/tex] and [tex]\( x = 2 \)[/tex] (negative to positive). This signifies that the function crosses the x-axis at least once within this interval, meaning there is at least one x-intercept.
Based on this information, we can conclude:
C. the function has at least one [tex]$x$[/tex]-intercept.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.