Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's outline the constraints given Alan's situation:
1. Alan uses [tex]\(\frac{1}{3}\)[/tex] cup of oil for each tray of blueberry muffins and [tex]\(\frac{1}{2}\)[/tex] cup of oil for each tray of bran muffins. Given that he has 4 cups of oil available, he needs to satisfy the constraint for oil usage:
[tex]\[ \frac{1}{3}x + \frac{1}{2}y \leq 4 \][/tex]
2. For eggs, Alan uses 2 eggs for each tray of blueberry muffins and 1 egg for each tray of bran muffins. Given that he has 12 eggs on hand, this results in the constraint for egg usage:
[tex]\[ 2x + y \leq 12 \][/tex]
3. Alan cannot bake a negative number of trays for either type of muffin, so the constraints for the number of trays baked are:
[tex]\[ x \geq 0 \][/tex]
[tex]\[ y \geq 0 \][/tex]
Combining these constraints, we have the following system of inequalities summarizing the problem:
[tex]\[ \begin{array}{l} \frac{1}{3}x + \frac{1}{2}y \leq 4 \\ 2x + y \leq 12 \\ x \geq 0 \\ y \geq 0 \\ \end{array} \][/tex]
Thus, these constraints must be satisfied in order to maximize the money raised at the bake sale.
1. Alan uses [tex]\(\frac{1}{3}\)[/tex] cup of oil for each tray of blueberry muffins and [tex]\(\frac{1}{2}\)[/tex] cup of oil for each tray of bran muffins. Given that he has 4 cups of oil available, he needs to satisfy the constraint for oil usage:
[tex]\[ \frac{1}{3}x + \frac{1}{2}y \leq 4 \][/tex]
2. For eggs, Alan uses 2 eggs for each tray of blueberry muffins and 1 egg for each tray of bran muffins. Given that he has 12 eggs on hand, this results in the constraint for egg usage:
[tex]\[ 2x + y \leq 12 \][/tex]
3. Alan cannot bake a negative number of trays for either type of muffin, so the constraints for the number of trays baked are:
[tex]\[ x \geq 0 \][/tex]
[tex]\[ y \geq 0 \][/tex]
Combining these constraints, we have the following system of inequalities summarizing the problem:
[tex]\[ \begin{array}{l} \frac{1}{3}x + \frac{1}{2}y \leq 4 \\ 2x + y \leq 12 \\ x \geq 0 \\ y \geq 0 \\ \end{array} \][/tex]
Thus, these constraints must be satisfied in order to maximize the money raised at the bake sale.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.