Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Factorize the expression:

[tex]\( x^3 - 3x^2 - 4x + 12 \)[/tex]


Sagot :

Absolutely, let's factorize the given polynomial step-by-step:

Given polynomial:
[tex]\[ x^3 - 3x^2 - 4x + 12 \][/tex]

### Step 1: Identify potential rational roots
The Rational Root Theorem states that any rational root of the polynomial [tex]\( p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \)[/tex] is a fraction [tex]\( \frac{p}{q} \)[/tex] where [tex]\( p \)[/tex] is a factor of the constant term [tex]\( a_0 \)[/tex] and [tex]\( q \)[/tex] is a factor of the leading coefficient [tex]\( a_n \)[/tex].

For the polynomial [tex]\( x^3 - 3x^2 - 4x + 12 \)[/tex]:
- The constant term [tex]\( a_0 = 12 \)[/tex]
- The leading coefficient [tex]\( a_n = 1 \)[/tex]

Potential rational roots are the factors of 12: [tex]\( \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \)[/tex].

### Step 2: Test the potential rational roots
Substitute each potential root into the polynomial to see if it equals zero.

1. Test [tex]\( x = 1 \)[/tex]:
[tex]\[ 1^3 - 3(1)^2 - 4(1) + 12 = 1 - 3 - 4 + 12 = 6 \neq 0 \][/tex]
So, [tex]\( x = 1 \)[/tex] is not a root.

2. Test [tex]\( x = 2 \)[/tex]:
[tex]\[ 2^3 - 3(2)^2 - 4(2) + 12 = 8 - 12 - 8 + 12 = 0 \][/tex]
So, [tex]\( x = 2 \)[/tex] is a root.

### Step 3: Perform polynomial division
Since [tex]\( x = 2 \)[/tex] is a root, we can factor [tex]\( (x - 2) \)[/tex] out of the polynomial [tex]\( x^3 - 3x^2 - 4x + 12 \)[/tex].

Use synthetic division to divide the polynomial by [tex]\( (x - 2) \)[/tex]:
[tex]\[ \begin{array}{r|rrrr} 2 & 1 & -3 & -4 & 12 \\ & & 2 & -2 & -12 \\ \hline & 1 & -1 & -6 & 0 \\ \end{array} \][/tex]
The result of synthetic division is:
[tex]\[ x^2 - x - 6 \][/tex]

### Step 4: Factor the quadratic polynomial
Next, we need to factorize [tex]\( x^2 - x - 6 \)[/tex]. We look for two numbers that multiply to [tex]\(-6\)[/tex] and add to [tex]\(-1\)[/tex]. These numbers are [tex]\(-3\)[/tex] and [tex]\(2\)[/tex].

So, we can write:
[tex]\[ x^2 - x - 6 = (x - 3)(x + 2) \][/tex]

### Step 5: Combine the factors
Now, combining all the factors we obtain:
[tex]\[ x^3 - 3x^2 - 4x + 12 = (x - 2)(x - 3)(x + 2) \][/tex]

### Final Answer:
The factorization of the polynomial [tex]\( x^3 - 3x^2 - 4x + 12 \)[/tex] is:
[tex]\[ (x - 2)(x - 3)(x + 2) \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.