Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the pre-image of a vertex [tex]\( A' \)[/tex] given that the rule used is [tex]\( r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \)[/tex], we need to apply the inverse transformation to each image vertex.
The given image vertices [tex]\( A' \)[/tex] are:
1. [tex]\( A_1'(-4, 2) \)[/tex]
2. [tex]\( A_2'(-2, -4) \)[/tex]
3. [tex]\( A_3'(2, 4) \)[/tex]
4. [tex]\( A_4'(4, -2) \)[/tex]
The rule [tex]\( r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \)[/tex] reflects a point across the y-axis by changing the sign of the x-coordinate. Now, we need to reverse this operation to find the original (pre-image) vertices.
1. For [tex]\( A_1'(-4, 2) \)[/tex]:
- Start with [tex]\((x, y) = (-4, 2)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (4, 2) \)[/tex]
2. For [tex]\( A_2'(-2, -4) \)[/tex]:
- Start with [tex]\((x, y) = (-2, -4)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (2, -4) \)[/tex]
3. For [tex]\( A_3'(2, 4) \)[/tex]:
- Start with [tex]\((x, y) = (2, 4)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (-2, 4) \)[/tex]
4. For [tex]\( A_4'(4, -2) \)[/tex]:
- Start with [tex]\((x, y) = (4, -2)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (-4, -2) \)[/tex]
Therefore, the pre-images of the vertices are:
1. [tex]\( A_1(4, 2) \)[/tex]
2. [tex]\( A_2(2, -4) \)[/tex]
3. [tex]\( A_3(-2, 4) \)[/tex]
4. [tex]\( A_4(-4, -2) \)[/tex]
These are the coordinates of the original vertices before the transformation was applied.
The given image vertices [tex]\( A' \)[/tex] are:
1. [tex]\( A_1'(-4, 2) \)[/tex]
2. [tex]\( A_2'(-2, -4) \)[/tex]
3. [tex]\( A_3'(2, 4) \)[/tex]
4. [tex]\( A_4'(4, -2) \)[/tex]
The rule [tex]\( r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \)[/tex] reflects a point across the y-axis by changing the sign of the x-coordinate. Now, we need to reverse this operation to find the original (pre-image) vertices.
1. For [tex]\( A_1'(-4, 2) \)[/tex]:
- Start with [tex]\((x, y) = (-4, 2)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (4, 2) \)[/tex]
2. For [tex]\( A_2'(-2, -4) \)[/tex]:
- Start with [tex]\((x, y) = (-2, -4)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (2, -4) \)[/tex]
3. For [tex]\( A_3'(2, 4) \)[/tex]:
- Start with [tex]\((x, y) = (2, 4)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (-2, 4) \)[/tex]
4. For [tex]\( A_4'(4, -2) \)[/tex]:
- Start with [tex]\((x, y) = (4, -2)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (-4, -2) \)[/tex]
Therefore, the pre-images of the vertices are:
1. [tex]\( A_1(4, 2) \)[/tex]
2. [tex]\( A_2(2, -4) \)[/tex]
3. [tex]\( A_3(-2, 4) \)[/tex]
4. [tex]\( A_4(-4, -2) \)[/tex]
These are the coordinates of the original vertices before the transformation was applied.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.