Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the pre-image of a vertex [tex]\( A' \)[/tex] given that the rule used is [tex]\( r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \)[/tex], we need to apply the inverse transformation to each image vertex.
The given image vertices [tex]\( A' \)[/tex] are:
1. [tex]\( A_1'(-4, 2) \)[/tex]
2. [tex]\( A_2'(-2, -4) \)[/tex]
3. [tex]\( A_3'(2, 4) \)[/tex]
4. [tex]\( A_4'(4, -2) \)[/tex]
The rule [tex]\( r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \)[/tex] reflects a point across the y-axis by changing the sign of the x-coordinate. Now, we need to reverse this operation to find the original (pre-image) vertices.
1. For [tex]\( A_1'(-4, 2) \)[/tex]:
- Start with [tex]\((x, y) = (-4, 2)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (4, 2) \)[/tex]
2. For [tex]\( A_2'(-2, -4) \)[/tex]:
- Start with [tex]\((x, y) = (-2, -4)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (2, -4) \)[/tex]
3. For [tex]\( A_3'(2, 4) \)[/tex]:
- Start with [tex]\((x, y) = (2, 4)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (-2, 4) \)[/tex]
4. For [tex]\( A_4'(4, -2) \)[/tex]:
- Start with [tex]\((x, y) = (4, -2)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (-4, -2) \)[/tex]
Therefore, the pre-images of the vertices are:
1. [tex]\( A_1(4, 2) \)[/tex]
2. [tex]\( A_2(2, -4) \)[/tex]
3. [tex]\( A_3(-2, 4) \)[/tex]
4. [tex]\( A_4(-4, -2) \)[/tex]
These are the coordinates of the original vertices before the transformation was applied.
The given image vertices [tex]\( A' \)[/tex] are:
1. [tex]\( A_1'(-4, 2) \)[/tex]
2. [tex]\( A_2'(-2, -4) \)[/tex]
3. [tex]\( A_3'(2, 4) \)[/tex]
4. [tex]\( A_4'(4, -2) \)[/tex]
The rule [tex]\( r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \)[/tex] reflects a point across the y-axis by changing the sign of the x-coordinate. Now, we need to reverse this operation to find the original (pre-image) vertices.
1. For [tex]\( A_1'(-4, 2) \)[/tex]:
- Start with [tex]\((x, y) = (-4, 2)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (4, 2) \)[/tex]
2. For [tex]\( A_2'(-2, -4) \)[/tex]:
- Start with [tex]\((x, y) = (-2, -4)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (2, -4) \)[/tex]
3. For [tex]\( A_3'(2, 4) \)[/tex]:
- Start with [tex]\((x, y) = (2, 4)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (-2, 4) \)[/tex]
4. For [tex]\( A_4'(4, -2) \)[/tex]:
- Start with [tex]\((x, y) = (4, -2)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (-4, -2) \)[/tex]
Therefore, the pre-images of the vertices are:
1. [tex]\( A_1(4, 2) \)[/tex]
2. [tex]\( A_2(2, -4) \)[/tex]
3. [tex]\( A_3(-2, 4) \)[/tex]
4. [tex]\( A_4(-4, -2) \)[/tex]
These are the coordinates of the original vertices before the transformation was applied.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.