Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

What is the pre-image of vertex [tex]\( A' \)[/tex] if the rule that created the image is [tex]\( r_{y\text{-axis}}(x, y) \rightarrow (-x, y) \)[/tex]?

A. [tex]\( A(-4,2) \)[/tex]

B. [tex]\( A(-2,-4) \)[/tex]

C. [tex]\( A(2,4) \)[/tex]

D. [tex]\( A(4,-2) \)[/tex]


Sagot :

To find the pre-image of a vertex [tex]\( A' \)[/tex] given that the rule used is [tex]\( r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \)[/tex], we need to apply the inverse transformation to each image vertex.

The given image vertices [tex]\( A' \)[/tex] are:

1. [tex]\( A_1'(-4, 2) \)[/tex]
2. [tex]\( A_2'(-2, -4) \)[/tex]
3. [tex]\( A_3'(2, 4) \)[/tex]
4. [tex]\( A_4'(4, -2) \)[/tex]

The rule [tex]\( r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \)[/tex] reflects a point across the y-axis by changing the sign of the x-coordinate. Now, we need to reverse this operation to find the original (pre-image) vertices.

1. For [tex]\( A_1'(-4, 2) \)[/tex]:
- Start with [tex]\((x, y) = (-4, 2)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (4, 2) \)[/tex]

2. For [tex]\( A_2'(-2, -4) \)[/tex]:
- Start with [tex]\((x, y) = (-2, -4)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (2, -4) \)[/tex]

3. For [tex]\( A_3'(2, 4) \)[/tex]:
- Start with [tex]\((x, y) = (2, 4)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (-2, 4) \)[/tex]

4. For [tex]\( A_4'(4, -2) \)[/tex]:
- Start with [tex]\((x, y) = (4, -2)\)[/tex]
- To find the pre-image, we reverse the operation, so we take [tex]\((-x, y)\)[/tex] to [tex]\( (-4, -2) \)[/tex]

Therefore, the pre-images of the vertices are:

1. [tex]\( A_1(4, 2) \)[/tex]
2. [tex]\( A_2(2, -4) \)[/tex]
3. [tex]\( A_3(-2, 4) \)[/tex]
4. [tex]\( A_4(-4, -2) \)[/tex]

These are the coordinates of the original vertices before the transformation was applied.