Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's evaluate each statement step by step.
### Statement (i)
[tex]\[ \frac{-3}{8} \geq 0 \][/tex]
First, consider the fraction [tex]\(\frac{-3}{8}\)[/tex]:
- The numerator is -3, which is negative.
- The denominator is 8, which is positive.
- A negative number divided by a positive number is negative.
Since [tex]\(\frac{-3}{8}\)[/tex] is negative, it is not greater than or equal to 0. Therefore, the statement [tex]\(\frac{-3}{8} \geq 0\)[/tex] is False.
To correct the statement:
[tex]\[ \frac{-3}{8} < 0 \][/tex]
### Statement (ii)
[tex]\[ \text{If } \frac{1}{2} > \frac{1}{3} \text{ then } \frac{1}{2} - \frac{1}{3} \text{ is positive.} \][/tex]
First, verify that [tex]\(\frac{1}{2} > \frac{1}{3}\)[/tex]:
- To compare [tex]\(\frac{1}{2}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex], convert them to a common denominator.
- The least common denominator of 2 and 3 is 6.
Convert each fraction:
[tex]\[ \frac{1}{2} = \frac{3}{6} \][/tex]
[tex]\[ \frac{1}{3} = \frac{2}{6} \][/tex]
Clearly, [tex]\(\frac{3}{6} > \frac{2}{6}\)[/tex], so [tex]\(\frac{1}{2} > \frac{1}{3}\)[/tex] is true.
Next, verify the condition:
[tex]\[ \frac{1}{2} - \frac{1}{3} \][/tex]
To subtract these fractions, again convert to a common denominator:
[tex]\[ \frac{1}{2} = \frac{3}{6} \][/tex]
[tex]\[ \frac{1}{3} = \frac{2}{6} \][/tex]
Now subtract:
[tex]\[ \frac{3}{6} - \frac{2}{6} = \frac{1}{6} \][/tex]
Since [tex]\(\frac{1}{6}\)[/tex] is positive, the statement [tex]\(\frac{1}{2} - \frac{1}{3}\)[/tex] is positive is true.
Therefore, the statement in (ii) holds:
[tex]\[ \frac{1}{2} > \frac{1}{3} \text{ implies } \frac{1}{2} - \frac{1}{3} \text{ is positive.} \][/tex]
Thus, this statement is True.
### Summary:
- Statement (i): False. Corrected statement: [tex]\(\frac{-3}{8} < 0\)[/tex]
- Statement (ii): True
The results of the evaluation are:
[tex]\[ \text{(i) False} \][/tex]
[tex]\[ \text{(ii) True} \][/tex]
### Statement (i)
[tex]\[ \frac{-3}{8} \geq 0 \][/tex]
First, consider the fraction [tex]\(\frac{-3}{8}\)[/tex]:
- The numerator is -3, which is negative.
- The denominator is 8, which is positive.
- A negative number divided by a positive number is negative.
Since [tex]\(\frac{-3}{8}\)[/tex] is negative, it is not greater than or equal to 0. Therefore, the statement [tex]\(\frac{-3}{8} \geq 0\)[/tex] is False.
To correct the statement:
[tex]\[ \frac{-3}{8} < 0 \][/tex]
### Statement (ii)
[tex]\[ \text{If } \frac{1}{2} > \frac{1}{3} \text{ then } \frac{1}{2} - \frac{1}{3} \text{ is positive.} \][/tex]
First, verify that [tex]\(\frac{1}{2} > \frac{1}{3}\)[/tex]:
- To compare [tex]\(\frac{1}{2}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex], convert them to a common denominator.
- The least common denominator of 2 and 3 is 6.
Convert each fraction:
[tex]\[ \frac{1}{2} = \frac{3}{6} \][/tex]
[tex]\[ \frac{1}{3} = \frac{2}{6} \][/tex]
Clearly, [tex]\(\frac{3}{6} > \frac{2}{6}\)[/tex], so [tex]\(\frac{1}{2} > \frac{1}{3}\)[/tex] is true.
Next, verify the condition:
[tex]\[ \frac{1}{2} - \frac{1}{3} \][/tex]
To subtract these fractions, again convert to a common denominator:
[tex]\[ \frac{1}{2} = \frac{3}{6} \][/tex]
[tex]\[ \frac{1}{3} = \frac{2}{6} \][/tex]
Now subtract:
[tex]\[ \frac{3}{6} - \frac{2}{6} = \frac{1}{6} \][/tex]
Since [tex]\(\frac{1}{6}\)[/tex] is positive, the statement [tex]\(\frac{1}{2} - \frac{1}{3}\)[/tex] is positive is true.
Therefore, the statement in (ii) holds:
[tex]\[ \frac{1}{2} > \frac{1}{3} \text{ implies } \frac{1}{2} - \frac{1}{3} \text{ is positive.} \][/tex]
Thus, this statement is True.
### Summary:
- Statement (i): False. Corrected statement: [tex]\(\frac{-3}{8} < 0\)[/tex]
- Statement (ii): True
The results of the evaluation are:
[tex]\[ \text{(i) False} \][/tex]
[tex]\[ \text{(ii) True} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.