Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine an estimate for the mean height of the plants, we follow these steps:
1. Identify the Midpoints of Each Height Interval:
To find the midpoint of each interval, we take the average of the lower and upper bounds of each height group. The intervals and their midpoints are:
- [tex]\( 0 \leq h < 10 \)[/tex]: Midpoint [tex]\( = \frac{0 + 10}{2} = 5 \)[/tex]
- [tex]\( 10 \leq h < 20 \)[/tex]: Midpoint [tex]\( = \frac{10 + 20}{2} = 15 \)[/tex]
- [tex]\( 20 \leq h < 30 \)[/tex]: Midpoint [tex]\( = \frac{20 + 30}{2} = 25 \)[/tex]
- [tex]\( 30 \leq h < 40 \)[/tex]: Midpoint [tex]\( = \frac{30 + 40}{2} = 35 \)[/tex]
- [tex]\( 40 \leq h < 50 \)[/tex]: Midpoint [tex]\( = \frac{40 + 50}{2} = 45 \)[/tex]
- [tex]\( 50 \leq h < 60 \)[/tex]: Midpoint [tex]\( = \frac{50 + 60}{2} = 55 \)[/tex]
2. List the Frequencies Corresponding to Each Interval:
The frequencies provided in the table are:
- [tex]\( 0 \leq h < 10 \)[/tex]: Frequency [tex]\( = 1 \)[/tex]
- [tex]\( 10 \leq h < 20 \)[/tex]: Frequency [tex]\( = 4 \)[/tex]
- [tex]\( 20 \leq h < 30 \)[/tex]: Frequency [tex]\( = 7 \)[/tex]
- [tex]\( 30 \leq h < 40 \)[/tex]: Frequency [tex]\( = 2 \)[/tex]
- [tex]\( 40 \leq h < 50 \)[/tex]: Frequency [tex]\( = 3 \)[/tex]
- [tex]\( 50 \leq h < 60 \)[/tex]: Frequency [tex]\( = 3 \)[/tex]
3. Calculate the Total Number of Plants:
The total number of plants is the sum of all frequencies:
[tex]\[ \text{Total Number of Plants} = 1 + 4 + 7 + 2 + 3 + 3 = 20 \][/tex]
4. Calculate the Weighted Sum of the Midpoints:
We multiply each midpoint by its corresponding frequency and then sum these products. This gives us the weighted sum:
[tex]\[ \text{Weighted Sum} = (5 \times 1) + (15 \times 4) + (25 \times 7) + (35 \times 2) + (45 \times 3) + (55 \times 3) \][/tex]
[tex]\[ = 5 + 60 + 175 + 70 + 135 + 165 = 610 \][/tex]
5. Calculate the Estimate for the Mean Height:
The mean height is obtained by dividing the weighted sum by the total number of plants:
[tex]\[ \text{Mean Height} = \frac{\text{Weighted Sum}}{\text{Total Number of Plants}} = \frac{610}{20} = 30.5 \][/tex]
Thus, the estimated mean height of the plants is:
[tex]\[ \boxed{30.5 \text{ cm}} \][/tex]
1. Identify the Midpoints of Each Height Interval:
To find the midpoint of each interval, we take the average of the lower and upper bounds of each height group. The intervals and their midpoints are:
- [tex]\( 0 \leq h < 10 \)[/tex]: Midpoint [tex]\( = \frac{0 + 10}{2} = 5 \)[/tex]
- [tex]\( 10 \leq h < 20 \)[/tex]: Midpoint [tex]\( = \frac{10 + 20}{2} = 15 \)[/tex]
- [tex]\( 20 \leq h < 30 \)[/tex]: Midpoint [tex]\( = \frac{20 + 30}{2} = 25 \)[/tex]
- [tex]\( 30 \leq h < 40 \)[/tex]: Midpoint [tex]\( = \frac{30 + 40}{2} = 35 \)[/tex]
- [tex]\( 40 \leq h < 50 \)[/tex]: Midpoint [tex]\( = \frac{40 + 50}{2} = 45 \)[/tex]
- [tex]\( 50 \leq h < 60 \)[/tex]: Midpoint [tex]\( = \frac{50 + 60}{2} = 55 \)[/tex]
2. List the Frequencies Corresponding to Each Interval:
The frequencies provided in the table are:
- [tex]\( 0 \leq h < 10 \)[/tex]: Frequency [tex]\( = 1 \)[/tex]
- [tex]\( 10 \leq h < 20 \)[/tex]: Frequency [tex]\( = 4 \)[/tex]
- [tex]\( 20 \leq h < 30 \)[/tex]: Frequency [tex]\( = 7 \)[/tex]
- [tex]\( 30 \leq h < 40 \)[/tex]: Frequency [tex]\( = 2 \)[/tex]
- [tex]\( 40 \leq h < 50 \)[/tex]: Frequency [tex]\( = 3 \)[/tex]
- [tex]\( 50 \leq h < 60 \)[/tex]: Frequency [tex]\( = 3 \)[/tex]
3. Calculate the Total Number of Plants:
The total number of plants is the sum of all frequencies:
[tex]\[ \text{Total Number of Plants} = 1 + 4 + 7 + 2 + 3 + 3 = 20 \][/tex]
4. Calculate the Weighted Sum of the Midpoints:
We multiply each midpoint by its corresponding frequency and then sum these products. This gives us the weighted sum:
[tex]\[ \text{Weighted Sum} = (5 \times 1) + (15 \times 4) + (25 \times 7) + (35 \times 2) + (45 \times 3) + (55 \times 3) \][/tex]
[tex]\[ = 5 + 60 + 175 + 70 + 135 + 165 = 610 \][/tex]
5. Calculate the Estimate for the Mean Height:
The mean height is obtained by dividing the weighted sum by the total number of plants:
[tex]\[ \text{Mean Height} = \frac{\text{Weighted Sum}}{\text{Total Number of Plants}} = \frac{610}{20} = 30.5 \][/tex]
Thus, the estimated mean height of the plants is:
[tex]\[ \boxed{30.5 \text{ cm}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.