Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which function satisfies [tex]\( y = 2 \)[/tex] when [tex]\( x = 3 \)[/tex], we'll evaluate each given function at [tex]\( x = 3 \)[/tex] and see if the result equals [tex]\( 2 \)[/tex].
### Function 1: [tex]\( -\frac{(x-5)}{(x+3)} \)[/tex]
Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ -\frac{(3-5)}{(3+3)} = -\frac{(-2)}{6} = \frac{2}{6} = \frac{1}{3} \][/tex]
This does not equal [tex]\( 2 \)[/tex].
### Function 2: [tex]\( \pi(x) = \frac{2(x+5)}{(x+3)} \)[/tex]
Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{2(3+5)}{(3+3)} = \frac{2(8)}{6} = \frac{16}{6} = \frac{8}{3} \][/tex]
This does not equal [tex]\( 2 \)[/tex].
### Function 3: [tex]\( f(x) = \frac{2(x+5)}{(x-3)} \)[/tex]
Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{2(3+5)}{(3-3)} = \frac{2(8)}{0} \][/tex]
This is undefined, as division by zero is not possible.
### Function 4: [tex]\( -\frac{(x+5)}{(x-3)} \)[/tex]
Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ -\frac{(3+5)}{(3-3)} = -\frac{8}{0} \][/tex]
This is undefined, as division by zero is not possible.
Since none of the functions return [tex]\( y = 2 \)[/tex] when [tex]\( x = 3 \)[/tex], there seems to be no function from the set provided that satisfies both [tex]\( x = 3 \)[/tex] and [tex]\( y = 2 \)[/tex].
### Conclusion:
None of the functions provided has both an appropriate domain where [tex]\( x = 3 \)[/tex] and a range that includes [tex]\( y = 2 \)[/tex].
### Function 1: [tex]\( -\frac{(x-5)}{(x+3)} \)[/tex]
Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ -\frac{(3-5)}{(3+3)} = -\frac{(-2)}{6} = \frac{2}{6} = \frac{1}{3} \][/tex]
This does not equal [tex]\( 2 \)[/tex].
### Function 2: [tex]\( \pi(x) = \frac{2(x+5)}{(x+3)} \)[/tex]
Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{2(3+5)}{(3+3)} = \frac{2(8)}{6} = \frac{16}{6} = \frac{8}{3} \][/tex]
This does not equal [tex]\( 2 \)[/tex].
### Function 3: [tex]\( f(x) = \frac{2(x+5)}{(x-3)} \)[/tex]
Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{2(3+5)}{(3-3)} = \frac{2(8)}{0} \][/tex]
This is undefined, as division by zero is not possible.
### Function 4: [tex]\( -\frac{(x+5)}{(x-3)} \)[/tex]
Evaluate at [tex]\( x = 3 \)[/tex]:
[tex]\[ -\frac{(3+5)}{(3-3)} = -\frac{8}{0} \][/tex]
This is undefined, as division by zero is not possible.
Since none of the functions return [tex]\( y = 2 \)[/tex] when [tex]\( x = 3 \)[/tex], there seems to be no function from the set provided that satisfies both [tex]\( x = 3 \)[/tex] and [tex]\( y = 2 \)[/tex].
### Conclusion:
None of the functions provided has both an appropriate domain where [tex]\( x = 3 \)[/tex] and a range that includes [tex]\( y = 2 \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.