Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the quotient of the rational expression [tex]\(\frac{3x + 1}{x + 8} \div \frac{x - 7}{5x}\)[/tex], we proceed with the following steps:
1. Rewrite the Division as Multiplication:
Division of fractions can be converted into multiplication by the reciprocal. Therefore:
[tex]\[ \frac{3 x + 1}{x + 8} \div \frac{x - 7}{5 x} = \frac{3 x + 1}{x + 8} \times \frac{5 x}{x - 7} \][/tex]
2. Multiply the Numerators Together:
Multiply the numerators of the two rational expressions:
[tex]\[ (3 x + 1) \times 5 x = 5 x (3 x + 1) \][/tex]
Simplifying the product:
[tex]\[ 5 x (3 x + 1) = 15 x^2 + 5 x \][/tex]
3. Multiply the Denominators Together:
Similarly, multiply the denominators of the two rational expressions:
[tex]\[ (x + 8) \times (x - 7) \][/tex]
Expanding the product using the distributive property (FOIL):
[tex]\[ (x + 8)(x - 7) = x^2 - 7x + 8x - 56 = x^2 + x - 56 \][/tex]
4. Form the New Rational Expression:
Place the simplified numerator and denominator into a single fraction:
[tex]\[ \frac{15 x^2 + 5 x}{x^2 + x - 56} \][/tex]
Therefore, the quotient of the given rational expression is:
[tex]\[ \boxed{\frac{15 x^2 + 5 x}{x^2 + x - 56}} \][/tex]
The answer corresponds to option D.
1. Rewrite the Division as Multiplication:
Division of fractions can be converted into multiplication by the reciprocal. Therefore:
[tex]\[ \frac{3 x + 1}{x + 8} \div \frac{x - 7}{5 x} = \frac{3 x + 1}{x + 8} \times \frac{5 x}{x - 7} \][/tex]
2. Multiply the Numerators Together:
Multiply the numerators of the two rational expressions:
[tex]\[ (3 x + 1) \times 5 x = 5 x (3 x + 1) \][/tex]
Simplifying the product:
[tex]\[ 5 x (3 x + 1) = 15 x^2 + 5 x \][/tex]
3. Multiply the Denominators Together:
Similarly, multiply the denominators of the two rational expressions:
[tex]\[ (x + 8) \times (x - 7) \][/tex]
Expanding the product using the distributive property (FOIL):
[tex]\[ (x + 8)(x - 7) = x^2 - 7x + 8x - 56 = x^2 + x - 56 \][/tex]
4. Form the New Rational Expression:
Place the simplified numerator and denominator into a single fraction:
[tex]\[ \frac{15 x^2 + 5 x}{x^2 + x - 56} \][/tex]
Therefore, the quotient of the given rational expression is:
[tex]\[ \boxed{\frac{15 x^2 + 5 x}{x^2 + x - 56}} \][/tex]
The answer corresponds to option D.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.