Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the system of equations using the matrix tool, we start by writing the system in the form of [tex]\[A\mathbf{x} = \mathbf{b}\][/tex] where [tex]\(A\)[/tex] is the coefficient matrix, [tex]\(\mathbf{x}\)[/tex] is the vector of variables, and [tex]\(\mathbf{b}\)[/tex] is the constants vector.
The given system of linear equations is:
[tex]\[ \begin{array}{rcl} 4x + 11y &=& -5 \\ 4x + 8y &=& -8 \end{array} \][/tex]
First, identify the coefficient matrix [tex]\(A\)[/tex], the variables vector [tex]\(\mathbf{x}\)[/tex], and the constants vector [tex]\(\mathbf{b}\)[/tex]:
[tex]\[ \begin{pmatrix} 4 & 11 \\ 4 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
Here,
[tex]\[ A = \begin{pmatrix} 4 & 11 \\ 4 & 8 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
We can use the matrix method to find [tex]\(\mathbf{x} = A^{-1}\mathbf{b}\)[/tex], where [tex]\(A^{-1}\)[/tex] is the inverse of the coefficient matrix [tex]\(A\)[/tex].
To find the inverse of [tex]\(A\)[/tex], first calculate the determinant of [tex]\(A\)[/tex]:
[tex]\[ \text{det}(A) = (4 \cdot 8) - (4 \cdot 11) = 32 - 44 = -12 \][/tex]
Since the determinant is non-zero, the inverse of [tex]\(A\)[/tex] exists. Now, calculate the inverse of the matrix [tex]\(A\)[/tex]:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{-12} \begin{pmatrix} 8 & -11 \\ -4 & 4 \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \][/tex]
Now, multiply [tex]\(A^{-1}\)[/tex] by [tex]\(\mathbf{b}\)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
Perform the matrix multiplication:
[tex]\[ \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -5 \\ -8 \end{pmatrix} = \begin{pmatrix} (-\frac{2}{3}) \cdot (-5) + \frac{11}{12} \cdot (-8) \\ (\frac{1}{3}) \cdot (-5) + (-\frac{1}{3}) \cdot (-8) \end{pmatrix} \][/tex]
Calculate each element step-by-step:
[tex]\[ \begin{pmatrix} \frac{10}{3} - \frac{88}{12} \\ -\frac{5}{3} + \frac{8}{3} \end{pmatrix} = \begin{pmatrix} \frac{10}{3} - \frac{22}{3} \\ \frac{3}{3} \end{pmatrix} = \begin{pmatrix} -\frac{12}{3} \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \end{pmatrix} \][/tex]
Thus, the solution to the given system of equations is the ordered pair [tex]\((-4, 1)\)[/tex].
Therefore, the solution is:
[tex]\[ \boxed{(-4, 1)} \][/tex]
The given system of linear equations is:
[tex]\[ \begin{array}{rcl} 4x + 11y &=& -5 \\ 4x + 8y &=& -8 \end{array} \][/tex]
First, identify the coefficient matrix [tex]\(A\)[/tex], the variables vector [tex]\(\mathbf{x}\)[/tex], and the constants vector [tex]\(\mathbf{b}\)[/tex]:
[tex]\[ \begin{pmatrix} 4 & 11 \\ 4 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
Here,
[tex]\[ A = \begin{pmatrix} 4 & 11 \\ 4 & 8 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
We can use the matrix method to find [tex]\(\mathbf{x} = A^{-1}\mathbf{b}\)[/tex], where [tex]\(A^{-1}\)[/tex] is the inverse of the coefficient matrix [tex]\(A\)[/tex].
To find the inverse of [tex]\(A\)[/tex], first calculate the determinant of [tex]\(A\)[/tex]:
[tex]\[ \text{det}(A) = (4 \cdot 8) - (4 \cdot 11) = 32 - 44 = -12 \][/tex]
Since the determinant is non-zero, the inverse of [tex]\(A\)[/tex] exists. Now, calculate the inverse of the matrix [tex]\(A\)[/tex]:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{-12} \begin{pmatrix} 8 & -11 \\ -4 & 4 \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \][/tex]
Now, multiply [tex]\(A^{-1}\)[/tex] by [tex]\(\mathbf{b}\)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -5 \\ -8 \end{pmatrix} \][/tex]
Perform the matrix multiplication:
[tex]\[ \begin{pmatrix} -\frac{2}{3} & \frac{11}{12} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -5 \\ -8 \end{pmatrix} = \begin{pmatrix} (-\frac{2}{3}) \cdot (-5) + \frac{11}{12} \cdot (-8) \\ (\frac{1}{3}) \cdot (-5) + (-\frac{1}{3}) \cdot (-8) \end{pmatrix} \][/tex]
Calculate each element step-by-step:
[tex]\[ \begin{pmatrix} \frac{10}{3} - \frac{88}{12} \\ -\frac{5}{3} + \frac{8}{3} \end{pmatrix} = \begin{pmatrix} \frac{10}{3} - \frac{22}{3} \\ \frac{3}{3} \end{pmatrix} = \begin{pmatrix} -\frac{12}{3} \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \end{pmatrix} \][/tex]
Thus, the solution to the given system of equations is the ordered pair [tex]\((-4, 1)\)[/tex].
Therefore, the solution is:
[tex]\[ \boxed{(-4, 1)} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.