Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Which polynomial lists the powers in descending order?

A. [tex]\( x^8 + 3x^6 + 8x^3 + 10x^2 - 2 \)[/tex]
B. [tex]\( 3x^6 + 10x^2 + x^8 + 8x^3 - 2 \)[/tex]
C. [tex]\( 10x^2 + 8x^3 + x^8 - 2 + 3x^6 \)[/tex]
D. [tex]\( x^8 + 10x^2 + 8x^3 + 3x^5 - 2 \)[/tex]


Sagot :

To determine which polynomial lists the powers of [tex]\( x \)[/tex] in descending order, we need to examine each polynomial and check the sequence of the exponents.

Choice A: [tex]\( x^8+3x^6+8x^3+10x^2-2 \)[/tex]
- Powers: [tex]\( 8, 6, 3, 2, 0 \)[/tex]
- The exponents are listed in descending order.

Choice B: [tex]\( 3x^6+10x^2+x^8+8x^3-2 \)[/tex]
- Powers: [tex]\( 6, 2, 8, 3, 0 \)[/tex]
- The exponents are not in descending order.

Choice C: [tex]\( 10x^2+8x^3+x^8-2+3x^6 \)[/tex]
- Powers: [tex]\( 2, 3, 8, 0, 6 \)[/tex]
- The exponents are not in descending order.

Choice D: [tex]\( x^8+10x^2+8x^3+3x^5-2 \)[/tex]
- Powers: [tex]\( 8, 2, 3, 5, 0 \)[/tex]
- The exponents are not in descending order.

Among these choices, only Choice A lists the exponents in descending order. Therefore, the correct answer is:

Choice A: [tex]\( x^8+3x^6+8x^3+10x^2-2 \)[/tex]