Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which polynomial lists the powers of [tex]\( x \)[/tex] in descending order, we need to examine each polynomial and check the sequence of the exponents.
Choice A: [tex]\( x^8+3x^6+8x^3+10x^2-2 \)[/tex]
- Powers: [tex]\( 8, 6, 3, 2, 0 \)[/tex]
- The exponents are listed in descending order.
Choice B: [tex]\( 3x^6+10x^2+x^8+8x^3-2 \)[/tex]
- Powers: [tex]\( 6, 2, 8, 3, 0 \)[/tex]
- The exponents are not in descending order.
Choice C: [tex]\( 10x^2+8x^3+x^8-2+3x^6 \)[/tex]
- Powers: [tex]\( 2, 3, 8, 0, 6 \)[/tex]
- The exponents are not in descending order.
Choice D: [tex]\( x^8+10x^2+8x^3+3x^5-2 \)[/tex]
- Powers: [tex]\( 8, 2, 3, 5, 0 \)[/tex]
- The exponents are not in descending order.
Among these choices, only Choice A lists the exponents in descending order. Therefore, the correct answer is:
Choice A: [tex]\( x^8+3x^6+8x^3+10x^2-2 \)[/tex]
Choice A: [tex]\( x^8+3x^6+8x^3+10x^2-2 \)[/tex]
- Powers: [tex]\( 8, 6, 3, 2, 0 \)[/tex]
- The exponents are listed in descending order.
Choice B: [tex]\( 3x^6+10x^2+x^8+8x^3-2 \)[/tex]
- Powers: [tex]\( 6, 2, 8, 3, 0 \)[/tex]
- The exponents are not in descending order.
Choice C: [tex]\( 10x^2+8x^3+x^8-2+3x^6 \)[/tex]
- Powers: [tex]\( 2, 3, 8, 0, 6 \)[/tex]
- The exponents are not in descending order.
Choice D: [tex]\( x^8+10x^2+8x^3+3x^5-2 \)[/tex]
- Powers: [tex]\( 8, 2, 3, 5, 0 \)[/tex]
- The exponents are not in descending order.
Among these choices, only Choice A lists the exponents in descending order. Therefore, the correct answer is:
Choice A: [tex]\( x^8+3x^6+8x^3+10x^2-2 \)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.