Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which polynomial lists the powers of [tex]\( x \)[/tex] in descending order, we need to examine each polynomial and check the sequence of the exponents.
Choice A: [tex]\( x^8+3x^6+8x^3+10x^2-2 \)[/tex]
- Powers: [tex]\( 8, 6, 3, 2, 0 \)[/tex]
- The exponents are listed in descending order.
Choice B: [tex]\( 3x^6+10x^2+x^8+8x^3-2 \)[/tex]
- Powers: [tex]\( 6, 2, 8, 3, 0 \)[/tex]
- The exponents are not in descending order.
Choice C: [tex]\( 10x^2+8x^3+x^8-2+3x^6 \)[/tex]
- Powers: [tex]\( 2, 3, 8, 0, 6 \)[/tex]
- The exponents are not in descending order.
Choice D: [tex]\( x^8+10x^2+8x^3+3x^5-2 \)[/tex]
- Powers: [tex]\( 8, 2, 3, 5, 0 \)[/tex]
- The exponents are not in descending order.
Among these choices, only Choice A lists the exponents in descending order. Therefore, the correct answer is:
Choice A: [tex]\( x^8+3x^6+8x^3+10x^2-2 \)[/tex]
Choice A: [tex]\( x^8+3x^6+8x^3+10x^2-2 \)[/tex]
- Powers: [tex]\( 8, 6, 3, 2, 0 \)[/tex]
- The exponents are listed in descending order.
Choice B: [tex]\( 3x^6+10x^2+x^8+8x^3-2 \)[/tex]
- Powers: [tex]\( 6, 2, 8, 3, 0 \)[/tex]
- The exponents are not in descending order.
Choice C: [tex]\( 10x^2+8x^3+x^8-2+3x^6 \)[/tex]
- Powers: [tex]\( 2, 3, 8, 0, 6 \)[/tex]
- The exponents are not in descending order.
Choice D: [tex]\( x^8+10x^2+8x^3+3x^5-2 \)[/tex]
- Powers: [tex]\( 8, 2, 3, 5, 0 \)[/tex]
- The exponents are not in descending order.
Among these choices, only Choice A lists the exponents in descending order. Therefore, the correct answer is:
Choice A: [tex]\( x^8+3x^6+8x^3+10x^2-2 \)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.