At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the equation of a line that is parallel to a given line and passes through a specific point, we can follow these steps:
1. Identify the slope of the given line:
- The equation of the given line is [tex]\( y - 1 = -\frac{3}{2}(x + 3) \)[/tex].
- By comparing this equation with the point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex], we see that the slope [tex]\( m \)[/tex] of the given line is [tex]\( -\frac{3}{2} \)[/tex].
2. Determine the slope of the parallel line:
- Lines that are parallel have the same slope. Therefore, the slope of the line parallel to the given line is also [tex]\( -\frac{3}{2} \)[/tex].
3. Use the point-slope form of the equation to find the equation of the parallel line passing through the point [tex]\((-3,1)\)[/tex]:
- The point-slope form is given by [tex]\( y - y_1 = m(x - x_1) \)[/tex].
- Here, [tex]\( m = -\frac{2}{3} \)[/tex], [tex]\( x_1 = -3 \)[/tex], and [tex]\( y_1 = 1 \)[/tex].
4. Substitute the values into the point-slope form:
- Using the given point [tex]\((-3,1)\)[/tex]:
[tex]\[ y - 1 = -\frac{2}{3}(x - (-3)) \][/tex]
- Simplifying the expression inside the parentheses:
[tex]\[ y - 1 = -\frac{2}{3}(x + 3) \][/tex]
Therefore, the equation of the line that is parallel to the given line and passes through the point [tex]\((-3,1)\)[/tex] is:
[tex]\[ y - 1 = -\frac{2}{3}(x + 3) \][/tex]
The correct answer is:
[tex]\[ y-1=-\frac{2}{3}(x+3) \][/tex]
1. Identify the slope of the given line:
- The equation of the given line is [tex]\( y - 1 = -\frac{3}{2}(x + 3) \)[/tex].
- By comparing this equation with the point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex], we see that the slope [tex]\( m \)[/tex] of the given line is [tex]\( -\frac{3}{2} \)[/tex].
2. Determine the slope of the parallel line:
- Lines that are parallel have the same slope. Therefore, the slope of the line parallel to the given line is also [tex]\( -\frac{3}{2} \)[/tex].
3. Use the point-slope form of the equation to find the equation of the parallel line passing through the point [tex]\((-3,1)\)[/tex]:
- The point-slope form is given by [tex]\( y - y_1 = m(x - x_1) \)[/tex].
- Here, [tex]\( m = -\frac{2}{3} \)[/tex], [tex]\( x_1 = -3 \)[/tex], and [tex]\( y_1 = 1 \)[/tex].
4. Substitute the values into the point-slope form:
- Using the given point [tex]\((-3,1)\)[/tex]:
[tex]\[ y - 1 = -\frac{2}{3}(x - (-3)) \][/tex]
- Simplifying the expression inside the parentheses:
[tex]\[ y - 1 = -\frac{2}{3}(x + 3) \][/tex]
Therefore, the equation of the line that is parallel to the given line and passes through the point [tex]\((-3,1)\)[/tex] is:
[tex]\[ y - 1 = -\frac{2}{3}(x + 3) \][/tex]
The correct answer is:
[tex]\[ y-1=-\frac{2}{3}(x+3) \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.