Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which of the given numbers is irrational, let's analyze each option step by step:
A. [tex]\(\sqrt{25}\)[/tex]
- The square root of 25 is 5 because [tex]\(5 \times 5 = 25\)[/tex].
- Since 5 is a whole number, it is rational.
- Therefore, [tex]\(\sqrt{25}\)[/tex] is rational.
B. 0.45
- The decimal 0.45 is a terminating decimal, meaning it ends after a finite number of decimal places.
- Any terminating decimal can be expressed as a fraction (in this case, [tex]\(\frac{45}{100} = \frac{9}{20}\)[/tex]), which means it is rational.
- Therefore, 0.45 is rational.
C. [tex]\(\sqrt{6}\)[/tex]
- The square root of 6 cannot be simplified to a whole number or a simple fraction because 6 is not a perfect square.
- Numbers that cannot be expressed as a fraction of two integers and have non-repeating, non-terminating decimal expansions are irrational.
- Therefore, [tex]\(\sqrt{6}\)[/tex] is irrational.
D. [tex]\(0.636363 \ldots\)[/tex]
- The decimal [tex]\(0.636363 \ldots\)[/tex] is a repeating decimal because the sequence "63" repeats infinitely.
- Any repeating decimal can be expressed as a fraction (in this case, it can be written as [tex]\(\frac{63}{99}\)[/tex] and simplified further if needed), which means it is rational.
- Therefore, [tex]\(0.636363 \ldots\)[/tex] is rational.
Given the analysis:
- Option A: [tex]\(\sqrt{25}\)[/tex] is rational.
- Option B: 0.45 is rational.
- Option C: [tex]\(\sqrt{6}\)[/tex] is irrational.
- Option D: [tex]\(0.636363 \ldots\)[/tex] is rational.
Thus, the irrational number among the options is:
C. [tex]\(\sqrt{6}\)[/tex]
A. [tex]\(\sqrt{25}\)[/tex]
- The square root of 25 is 5 because [tex]\(5 \times 5 = 25\)[/tex].
- Since 5 is a whole number, it is rational.
- Therefore, [tex]\(\sqrt{25}\)[/tex] is rational.
B. 0.45
- The decimal 0.45 is a terminating decimal, meaning it ends after a finite number of decimal places.
- Any terminating decimal can be expressed as a fraction (in this case, [tex]\(\frac{45}{100} = \frac{9}{20}\)[/tex]), which means it is rational.
- Therefore, 0.45 is rational.
C. [tex]\(\sqrt{6}\)[/tex]
- The square root of 6 cannot be simplified to a whole number or a simple fraction because 6 is not a perfect square.
- Numbers that cannot be expressed as a fraction of two integers and have non-repeating, non-terminating decimal expansions are irrational.
- Therefore, [tex]\(\sqrt{6}\)[/tex] is irrational.
D. [tex]\(0.636363 \ldots\)[/tex]
- The decimal [tex]\(0.636363 \ldots\)[/tex] is a repeating decimal because the sequence "63" repeats infinitely.
- Any repeating decimal can be expressed as a fraction (in this case, it can be written as [tex]\(\frac{63}{99}\)[/tex] and simplified further if needed), which means it is rational.
- Therefore, [tex]\(0.636363 \ldots\)[/tex] is rational.
Given the analysis:
- Option A: [tex]\(\sqrt{25}\)[/tex] is rational.
- Option B: 0.45 is rational.
- Option C: [tex]\(\sqrt{6}\)[/tex] is irrational.
- Option D: [tex]\(0.636363 \ldots\)[/tex] is rational.
Thus, the irrational number among the options is:
C. [tex]\(\sqrt{6}\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.